Credit card fraud detection using a deep learning multistage model

被引:0
|
作者
Georgios Zioviris
Kostas Kolomvatsos
George Stamoulis
机构
[1] University of Thessaly,Department of Electrical and Computer Engineering
[2] University of Thessaly,Department of Informatics and Telecommunications
来源
关键词
Fraud detection; Autoencoder (AE); Variational autoencoder (VAE); Convolutional neural network (CNN); Dimensionality reduction; Oversampling techniques;
D O I
暂无
中图分类号
学科分类号
摘要
The banking sector is on the eve of a serious transformation and the thrust behind it is artificial intelligence (AI). Novel AI applications have been already proposed to deal with challenges in the areas of credit scoring, risk assessment, client experience and portfolio management. One of the most critical challenges in the aforementioned sector is fraud detection upon streams of transactions. Recently, deep learning models have been introduced to deal with the specific problem in terms of detecting and forecasting possible fraudulent events. The aim is to estimate the unknown distribution of normal/fraudulent transactions and then to identify deviations that may indicate a potential fraud. In this paper, we elaborate on a novel multistage deep learning model that targets to efficiently manage the incoming streams of transactions and detect the fraudulent ones. We propose the use of two autoencoders to perform feature selection and learn the latent data space representation based on a nonlinear optimization model. On the delivered significant features, we subsequently apply a deep convolutional neural network to detect frauds, thus combining two different processing blocks. The adopted combination has the goal of detecting frauds over the exposed latent data representation and not over the initial data.
引用
收藏
页码:14571 / 14596
页数:25
相关论文
共 50 条
  • [41] Representation Learning in Graphs for Credit Card Fraud Detection
    Van Belle, Rafael
    Mitrovic, Sandra
    De Weerdt, Jochen
    MINING DATA FOR FINANCIAL APPLICATIONS, 2020, 11985 : 32 - 46
  • [42] Credit Card Fraud Detection - Machine Learning methods
    Varmedja, Dejan
    Karanovic, Mirjana
    Sladojevic, Srdjan
    Arsenovic, Marko
    Anderla, Andras
    2019 18TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2019,
  • [43] Transfer Learning Strategies for Credit Card Fraud Detection
    Lebichot, Bertrand
    Verhelst, Theo
    Le Borgne, Yann-Ael
    He-Guelton, Liyun
    Oble, Frederic
    Bontempi, Gianluca
    IEEE ACCESS, 2021, 9 : 114754 - 114766
  • [44] Credit Card Fraud Detection with Machine Learning Methods
    Goy, Gokhan
    Gezer, Cengiz
    Gungor, Vehbi Cagri
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 350 - 354
  • [45] Credit Card Fraud Detection Based on Machine Learning
    Fang, Yong
    Zhang, Yunyun
    Huang, Cheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 185 - 195
  • [46] Credit Card Fraud Detection
    Tiwari, Mohit
    Sharma, Vipul
    Bala, Devashish
    Devansh
    Kaushal, Dishant
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 1778 - 1789
  • [47] Machine Learning Model for Credit Card Fraud Detection- A Comparative Analysis
    Sharma, Pratyush
    Banerjee, Souradeep
    Tiwari, Devyanshi
    Patni, Jagdish Chandra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (06) : 789 - 796
  • [48] A Hybrid Deep Learning Approach with Generative Adversarial Network for Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Swart, Theo G.
    TECHNOLOGIES, 2024, 12 (10)
  • [49] Federated learning model for credit card fraud detection with data balancing techniques
    Abdul Salam, Mustafa
    Fouad, Khaled M.
    Elbably, Doaa L.
    Elsayed, Salah M.
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (11): : 6231 - 6256
  • [50] Credit Card Fraud Detection Model-based Machine Learning Algorithms
    Idrees, Amira M.
    Elhusseny, Nermin Samy
    Ouf, Shimaa
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1649 - 1662