Dynamical universality for random matrices

被引:3
作者
Kawamoto, Yosuke [1 ]
Osada, Hirofumi [2 ]
机构
[1] Fukuoka Dent Coll, Fukuoka 8140193, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 3卷 / 02期
基金
日本学术振兴会;
关键词
Random matrices; Dynamical universality; Dirichlet forms; Infinite-dimensional stochastic differential equations; STOCHASTIC DIFFERENTIAL-EQUATIONS; ENSEMBLES; CONVERGENCE; ASYMPTOTICS; POLYNOMIALS; RESPECT; UNITARY; BULK;
D O I
10.1007/s42985-022-00154-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an invariance principle corresponding to the universality of random matrices. More precisely, we prove the dynamical universality of random matrices in the sense that, if the random point fields mu N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu <^>N $$\end{document} of N-particle systems describing the eigenvalues of random matrices or log-gases with general self-interaction potentials V converge to some random point field mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}, then the associated natural mu N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu <^>N $$\end{document}-reversible diffusions represented by solutions of stochastic differential equations (SDEs) converge to some mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-reversible diffusion given by the solution of an infinite-dimensional SDE (ISDE). Our results are general theorems that can be applied to various random point fields related to random matrices such as sine, Airy, Bessel, and Ginibre random point fields. In general, the representations of finite-dimensional SDEs describing N-particle systems are very complicated. Nevertheless, the limit ISDE has a simple and universal representation that depends on a class of random matrices appearing in the bulk, and at the soft- and at hard-edge positions. Thus, we prove that ISDEs such as the infinite-dimensional Dyson model and the Airy, Bessel, and Ginibre interacting Brownian motions are universal dynamical objects.
引用
收藏
页数:51
相关论文
共 39 条
[31]   Cores of Dirichlet forms related to random matrix theory [J].
Osada, Hirofumi ;
Tanemura, Hideki .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (10) :145-150
[35]  
Reed M., 1980, Method of Modern Mathematical Physics I: Functional Analysis, VRevised
[36]   Orthogonal and Symplectic Matrix Models: Universality and Other Properties [J].
Shcherbina, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (03) :761-790
[37]  
Spohn H., 1987, Hydrodynamic Behavior and Interacting Particle Systems, P151
[38]   RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES [J].
Tao, Terence ;
Vu, Van .
ANNALS OF PROBABILITY, 2015, 43 (02) :782-874
[39]   Infinite dimensional stochastic differential equations for Dyson's model [J].
Tsai, Li-Cheng .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) :801-850