Skew Young Diagram Method in Spectral Decomposition of Integrable Lattice Models

被引:0
作者
A. N. Kirillov
A. Kuniba
T. Nakanishi
机构
[1] Department of Mathematical Sciences,
[2] University of Tokyo,undefined
[3] Komaba,undefined
[4] Meguro-ku,undefined
[5] Tokyo 153,undefined
[6] Japan,undefined
[7] Institute of Physics,undefined
[8] University of Tokyo,undefined
[9] Komaba,undefined
[10] Meguro-ku,undefined
[11] Tokyo 153,undefined
[12] Japan,undefined
[13] Department of Mathematics,undefined
[14] University of North Carolina,undefined
[15] Chapel Hill,undefined
[16] NC 27599,undefined
[17] USA,undefined
来源
Communications in Mathematical Physics | 1997年 / 185卷
关键词
Lattice Model; Young Diagram; Spectral Decomposition; Integrable Lattice; Integrable Lattice Model;
D O I
暂无
中图分类号
学科分类号
摘要
The spectral decomposition of the path space of the vertex model associated to the vector representation of the quantized affine algebra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is studied. We give a one-to-one correspondence between the spin configurations and the semistandard tableaux of skew Young diagrams. As a result we obtain a formula of the characters for the degeneracy of the spectrum in terms of skew Schur functions. We conjecture that our result describes the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-module contents of the Yangian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-module structures of the level 1 integrable modules of the affine Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. An analogous result is obtained also for a vertex model associated to the quantized twisted affine algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} characters appear for the degeneracy of the spectrum. The relations to the spectrum of the Haldane-Shastry and the Polychronakos models are also discussed.
引用
收藏
页码:441 / 465
页数:24
相关论文
empty
未找到相关数据