Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

被引:0
|
作者
Wan Ki Bae
Young-Shin Park
Jaehoon Lim
Donggu Lee
Lazaro A. Padilha
Hunter McDaniel
Istvan Robel
Changhee Lee
Jeffrey M. Pietryga
Victor I. Klimov
机构
[1] Los Alamos National Laboratory,Chemistry Division
[2] Photo-Electronic Hybrid Research Center,undefined
[3] Korea Institute of Science and Technology,undefined
[4] School of Electrical Engineering and Computer Science,undefined
[5] Inter-university Semiconductor Research Center,undefined
[6] Seoul National University,undefined
[7] Instituto de Fisica “Gleb Wataghin”,undefined
[8] Universidade Estadual de Campinas,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection.
引用
收藏
相关论文
共 50 条
  • [11] Influence of Light-Matter Interaction on Efficiency of Quantum-Dot Light-Emitting Diodes
    Tian, Fengshou
    Yuan, Cuixia
    Chen, Shuming
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (44): : 10312 - 10317
  • [12] Influence of shells on the charge tunneling behavior in quantum-dot light-emitting diodes
    Zhu, Bingyan
    Wang, Ting
    Wang, Song
    Chi, Xiaochun
    Zhang, Han
    Zhang, Hanzhuang
    Ji, Wenyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (07)
  • [13] High-performance crosslinked colloidal quantum-dot light-emitting diodes
    Cho, Kyung-Sang
    Lee, Eun Kyung
    Joo, Won-Jae
    Jang, Eunjoo
    Kim, Tae-Ho
    Lee, Sang Jin
    Kwon, Soon-Jae
    Han, Jai Yong
    Kim, Byung-Ki
    Choi, Byoung Lyong
    Kim, Jong Min
    NATURE PHOTONICS, 2009, 3 (06) : 341 - 345
  • [14] Improved performance in quantum-dot light-emitting diodes through current annealing
    Liu, Yusheng
    Yan, Minming
    Liu, Yuyu
    Meng, Lingqing
    Zhang, Yong
    ORGANIC ELECTRONICS, 2024, 128
  • [15] A dC/dV Measurement for Quantum-Dot Light-Emitting Diodes
    Ma, Jingrui
    Tang, Haodong
    Qu, Xiangwei
    Xiang, Guohong
    Jia, Siqi
    Liu, Pai
    Wang, Kai
    Sun, Xiao Wei
    CHINESE PHYSICS LETTERS, 2022, 39 (12)
  • [16] Ultrahigh-resolution quantum-dot light-emitting diodes
    Tingtao Meng
    Yueting Zheng
    Denglin Zhao
    Hailong Hu
    Yangbin Zhu
    Zhongwei Xu
    Songman Ju
    Jipeng Jing
    Xiang Chen
    Hongjin Gao
    Kaiyu Yang
    Tailiang Guo
    Fushan Li
    Junpeng Fan
    Lei Qian
    Nature Photonics, 2022, 16 : 297 - 303
  • [17] Transient Leakage Electroluminescence of Quantum-Dot Light-Emitting Diodes
    Zhao, Shiqi
    Bai, Peng
    Zhao, Xiaofei
    Li, Guangru
    NANO LETTERS, 2024, 24 (41) : 12981 - 12987
  • [18] A review on the electroluminescence properties of quantum-dot light-emitting diodes
    Yuan, Qilin
    Wang, Ting
    Yu, Panlong
    Zhang, Hanzhuang
    Zhang, Han
    Ji, Wenyu
    ORGANIC ELECTRONICS, 2021, 90 (90)
  • [19] A dC/dV Measurement for Quantum-Dot Light-Emitting Diodes
    马精瑞
    唐浩东
    瞿祥炜
    项国洪
    贾思琪
    刘湃
    王恺
    孙小卫
    Chinese Physics Letters, 2022, 39 (12) : 125 - 134
  • [20] Scaling quantum-dot light-emitting diodes to submicrometer sizes
    Fiore, A
    Chen, JX
    Ilegems, M
    APPLIED PHYSICS LETTERS, 2002, 81 (10) : 1756 - 1758