Gradient schemes for linear and non-linear elasticity equations

被引:0
作者
Jérôme Droniou
Bishnu P. Lamichhane
机构
[1] Monash University,School of Mathematical Sciences
[2] University of Newcastle,School of Mathematical and Physical Sciences
来源
Numerische Mathematik | 2015年 / 129卷
关键词
65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
The gradient scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the gradient scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the gradient scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}-regularity or for non-linear models.
引用
收藏
页码:251 / 277
页数:26
相关论文
共 60 条
[1]  
Barrientos MA(2002)A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate Numer. Math. 91 197-222
[2]  
Gatica GN(2004)Uniform convergence and a posteriori error estimators for the enhanced strain finite element method Numerische Mathematik 96 461-479
[3]  
Stephan EP(2005)A finite element method for nearly incompressible elasticity problems Math. Comput. 74 25-52
[4]  
Braess D(1992)Linear finite element methods for planar linear elasticity Math. Comput. 59 321-338
[5]  
Carstensen C(2006)A stabilized non-conforming finite element method for incompressible flow Comput. Methods Appl. Mech. Eng. 195 2881-2899
[6]  
Reddy BD(2010)Mixed stabilized finite element methods in nonlinear solid mechanics Part II: strain localization Comput. Methods Appl. Mech. Eng. 199 2571-2589
[7]  
Braess D(2006)Conditions for equivalence between the Hu–Washizu and related formulations, and computational behavior in the incompressible limit Comput. Methods Appl. Mech. Eng. 195 4161-4178
[8]  
Ming P-B(2006)Finite volume schemes for fully non-linear elliptic equations in divergence form Math. Model. Numer. Anal. 40 1069-1100
[9]  
Brenner SC(2013)Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations Math. Models Methods Appl. Sci. 23 2395-2432
[10]  
Sung L(2009)Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids J. Numer. Math. 17 173-193