Aggregate keyword nearest neighbor queries on road networks

被引:0
作者
Pengfei Zhang
Huaizhong Lin
Yunjun Gao
Dongming Lu
机构
[1] Zhejiang University,College of Computer Science and Technology
来源
GeoInformatica | 2018年 / 22卷
关键词
Nearest neighbor; Keyword search; Road network; Index structure;
D O I
暂无
中图分类号
学科分类号
摘要
Given a group Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Q}$\end{document} of query points and a set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}$\end{document} of points of interest (POIs), aggregate nearest neighbor (ANN) queries find a POI p from P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}$\end{document} that achieves the smallest aggregate distance. Specifically, the aggregate distance is defined over the set of distances between p and all query points in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Q}$\end{document}. Existing studies on ANN query mainly consider the spatial proximity, whereas the textual similarity has received considerable attention recently. In this work, we utilize user-specified query keywords to capture textual similarity. We study the aggregate keyword nearest neighbor (AKNN) queries, finding the POI that has the smallest aggregate distance and covers all query keywords. Nevertheless, existing methods on ANN query are either inapplicable or inefficient when applied to the AKNN query. To answer our query efficiently, we first develop a dual-granularity (DG) indexing schema. It preserves abstracts of the road network by a tree structure, and preserves detailed network information by an extended adjacency list. Then, we propose a minimal first search (MFS) algorithm. It traverses the tree and explores the node with the minimal aggregate distance iteratively. This method suffers from false hits arising from keyword tests. Thus, we propose the collaborative filtering technique, which performs keywords test by multiple keyword bitmaps collectively rather than by only one. Extensive experiments on both real and synthetic datasets demonstrate the superiority of our algorithms and optimizing strategies.
引用
收藏
页码:237 / 268
页数:31
相关论文
共 74 条
[1]  
Abbasifard MR(2014)A survey on nearest neighbor search methods International Journal of Computer Applications 95 39-52
[2]  
Ghahremani B(2015)Efficient processing of spatial group keyword queries TODS 40 13-308
[3]  
Naderi H(2012)On group nearest group query processing TKDE 24 295-95
[4]  
Cao X(2013)Continuous aggregate nearest neighbor queries GeoInformatica 17 63-1218
[5]  
Cong G(2015)Efficient reverse top-k boolean spatial keyword queries on road networks TKDE 27 1205-480
[6]  
Guo T(2016)Efficient collective spatial keyword query processing on road networks TITS 17 469-3273
[7]  
Jensen CS(2015)Effective and efficient algorithms for flexible aggregate similarity search in high dimensional spaces TKDE 27 3258-338
[8]  
Ooi BC(2016)Exact and approximate flexible aggregate similarity search VLDB J 25 317-576
[9]  
Deng K(2005)Aggregate nearest neighbor queries in spatial databases TODS 30 529-119
[10]  
Sadiq S(1997)Ccam: a connectivity-clustered access method for networks and network computations TKDE 9 102-755