Rigidity for C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} actions on the interval arising from hyperbolicity I: solvable groups

被引:0
|
作者
C. Bonatti
I. Monteverde
A. Navas
C. Rivas
机构
[1] Univ. de Bourgogne,
[2] Univ. de la República,undefined
[3] USACH,undefined
关键词
Actions on 1-manifolds; Solvable groups; Rigidity; Hyperbolicity; diffeomorphisms; 20F16; 22F05; 37C85; 37F15;
D O I
10.1007/s00209-016-1790-y
中图分类号
学科分类号
摘要
We consider Abelian-by-cyclic groups for which the cyclic factor acts by hyperbolic automorphisms on the Abelian subgroup. We show that if such a group acts faithfully by C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} diffeomorphisms of the closed interval with no global fixed point at the interior, then the action is topologically conjugate to that of an affine group. Moreover, in case of non-Abelian image, we show a rigidity result concerning the multipliers of the homotheties, despite the fact that the conjugacy is not necessarily smooth. Some consequences for non-solvable groups are proposed. In particular, we give new proofs/examples yielding the existence of finitely-generated, locally-indicable groups with no faithful action by C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} diffeomorphisms of the interval.
引用
收藏
页码:919 / 949
页数:30
相关论文
共 50 条