Leapfrogging Vortex Rings for the Three Dimensional Gross-Pitaevskii Equation

被引:0
作者
Jerrard R.L. [1 ]
Smets D. [2 ]
机构
[1] Department of Mathematics, University of Toronto, Toronto, M5S 2E4, ON
[2] Laboratoire Jacques-Louis Lions, Université Pierre and Marie Curie, 4 place Jussieu BC 187, Paris Cedex 05
基金
加拿大自然科学与工程研究理事会;
关键词
Gross-Pitaevskii equation; Incompressible Euler equation; Leapfrogging; Vortex rings;
D O I
10.1007/s40818-017-0040-x
中图分类号
学科分类号
摘要
Leapfrogging motion of vortex rings sharing the same axis of symmetry was first predicted by Helmholtz in his famous work on the Euler equation for incompressible fluids. Its justification in that framework remains an open question to date. In this paper, we rigorously derive the corresponding leapfrogging motion for the axially symmetric three-dimensional Gross-Pitaevskii equation. © 2017, Springer International Publishing AG, part of Springer Nature.
引用
收藏
相关论文
共 18 条
[1]  
Abramowitz M., Stegun I., Handbook of Mathematical Functions, (1964)
[2]  
Bethuel F., Brezis H., Helein F., Ginzburg-Landau Vortices, (1994)
[3]  
Bethuel F., Gravejat P., Smets D., Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier, 64, pp. 19-70, (2014)
[4]  
Bethuel F., Orlandi G., Smets D., Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. (JEMS), 6, pp. 17-94, (2004)
[5]  
Benedetto D., Caglioti E., Marchioro C., On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci., 23, pp. 147-168, (2000)
[6]  
Dyson F.W., The potential of an anchor ring, Philos. Trans. R. Soc. Lond. A, 184, pp. 43-95, (1893)
[7]  
Helmholtz H., Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 55, pp. 25-55, (1858)
[8]  
Helmholtz H., (Translated by P.G. Tait) On the integrals of the hydrodynamical equations which express vortex-motion, Phil. Mag, 33, pp. 485-512, (1867)
[9]  
Hicks W.M., On the mutual threading of vortex rings, Proc. R. Soc. Lond. A, 102, pp. 111-131, (1922)
[10]  
Jackson J.D., Classical Electrodynamics, (1962)