Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems

被引:0
作者
S. Leonardi
Nikolaos S. Papageorgiou
机构
[1] Università degli Studi di Catania,Dipartimento di Matematica e Informatica
[2] National Technical University,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Nonhomogeneous differential operator; Singular term; -superlinear parametric perturbation; Nonlinear regularity; Bifurcation-type theorem; Minimal positive solutions; Robin boundary condition; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Robin problems driven by a nonhomogeneous differential operator and with a reaction that has a singular term and a parametric (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear perturbation which need not satisfy the Ambrosetti–Rabinowitz condition. We are looking for positive solutions. Using variational arguments and a suitable truncation and comparison techniques, we prove a bifurcation-type theorem which describes the set of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > 0$$\end{document} varies. Also we show the for every admissible value of the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, the problem has a smallest solution u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{u}}_{\lambda }$$\end{document} and we determine the monotonicity and continuity properties of the map λ→u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow {\bar{u}}_{\lambda }$$\end{document}.
引用
收藏
相关论文
共 60 条
  • [11] Diaz JI(2020)-Laplacian equation with Nonlinear Anal. 195 111760-4613
  • [12] Saa JE(1991)-superlinear potential Commun. Partial Differ. Equ. 16 311-788
  • [13] Gasinski L(2010)Entire solutions of a singular semi linear elliptic problem Nonlinear Anal. 72 4602-430
  • [14] Papageorgiou NS(2012)Nonlinear Robin problems with indefinite potential Ann. Scu. Norm. Sup. Pisa (5) 12 729-764
  • [15] Giacomoni J(2014)The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations J. Differ. Equ. 256 393-2618
  • [16] Schindler I(2016)The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of a Adv. Nonlinear Stud. 16 737-580
  • [17] Takač P(2017)-Laplacian type without the Ambrosetti–Rabinowitz condition Discrete Contin. Dyn. Syst. 37 2589-170
  • [18] Hirano N(2017)Resonant nonlinear Neumann problems with indefinite weight Electr. J. Differ. Equ. 2017 22-245
  • [19] Saccon C(2018)Multiple solutions with precise sigh information for nonlinear parametric Robin problem Forum Math. 30 553-249
  • [20] Shioji N(2019)Nonlinear nonhomogeneous Robin problem with superlinear reaction term Bull. Math. Sci. 9 21-382