Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems

被引:0
作者
S. Leonardi
Nikolaos S. Papageorgiou
机构
[1] Università degli Studi di Catania,Dipartimento di Matematica e Informatica
[2] National Technical University,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Nonhomogeneous differential operator; Singular term; -superlinear parametric perturbation; Nonlinear regularity; Bifurcation-type theorem; Minimal positive solutions; Robin boundary condition; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Robin problems driven by a nonhomogeneous differential operator and with a reaction that has a singular term and a parametric (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear perturbation which need not satisfy the Ambrosetti–Rabinowitz condition. We are looking for positive solutions. Using variational arguments and a suitable truncation and comparison techniques, we prove a bifurcation-type theorem which describes the set of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > 0$$\end{document} varies. Also we show the for every admissible value of the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, the problem has a smallest solution u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{u}}_{\lambda }$$\end{document} and we determine the monotonicity and continuity properties of the map λ→u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow {\bar{u}}_{\lambda }$$\end{document}.
引用
收藏
相关论文
共 60 条
  • [1] Candito P(2019)Nonlinear nonhomogeneous Robin problem with convection Ann. Acad. Sci. Fennicae-Math. 44 755-767
  • [2] Gasinski L(2009)On the Neumann problem with singular and superlinear nonlinearities Commun. Appl. Anal. 13 327-340
  • [3] Papageorgiou NS(2014)Fourth-order nonlinear elliptic equations with lower order term and natural growth conditions Nonlinear Anal. TMA 108 66-86
  • [4] Chabrowski J(2018)Gradient estimate for solutions of nonlinear singular elliptic equations below the duality exponent Math. Methods Appl. Sci 41 261-524
  • [5] Cirmi GR(1987)Existence et unicit e de solutions positives pour certains equations elliptiques quasilineaires CRAS Paris, t. 305 521-870
  • [6] D’Asero S(2006)Existence and multiplicity of solutions for Neumann Adv. Nonlinear Stud. 8 843-158
  • [7] Leonardi S(2007)–Laplacian type equations Ann. Scu. Norm. Super. Pisa Cl. Sci. (5) 6 117-2037
  • [8] Cirmi GR(2008)Sobolev versus Hölder local minimizers and existence of multiple solutions for a quasilinear equation J. Differ. Equ. 245 1997-1142
  • [9] D’Asero S(2010)Brezis–Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem Nonlinear Anal. 73 1136-505
  • [10] Leonardi S(1996)Pairs of positive solutions for singular J. Math. Anal. Appl. 200 498-361