Convolutional neural network -based phantom image scoring for mammography quality control

被引:0
作者
Veli-Matti Sundell
Teemu Mäkelä
Anne-Mari Vitikainen
Touko Kaasalainen
机构
[1] University of Helsinki,Department of Physics
[2] University of Helsinki and Helsinki University Hospital,HUS Diagnostic Center, Radiology
来源
BMC Medical Imaging | / 22卷
关键词
Mammography; Quality control; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 144 条
[1]  
Barrett HH(1993)Model observers for assessment of image quality Proc Natl Acad Sci USA 90 9758-65
[2]  
Yao J(2016)Can the non-pre-whitening model observer, including aspects of the human visual system, predict human observer performance in mammography? Phys Med 32 1559-69
[3]  
Rolland JP(2017)Can the channelized hotelling observer including aspects of the human visual system predict human observer performance in mammography? Phys Med 33 95-105
[4]  
Myers KJ(2017)A model observer study using acquired mammographic images of an anthropomorphic breast phantom Med Phys 45 655-65
[5]  
Bouwman RW(2016)Design of a model observer to evaluate calcification detectability in breast tomosynthesis and application to smoothing prior optimization Med Phys 43 6577-87
[6]  
van Engen RE(2016)Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning IEEE Trans Med Imag 35 1285-98
[7]  
Broeders MJM(2019)Automatic multiorgan segmentation in thorax CT images using U-net-GAN Med Phys 46 2157-68
[8]  
den Heeten GJ(2019)Automated abdominal segmentation of CT scans for body composition analysis using deep learning Radiology 290 669-79
[9]  
Dance DR(2018)CNN-Based projected gradient descent for consistent CT image reconstruction IEEE Trans Med Imag 37 1440-53
[10]  
Young KC(2019)Iterative PET image reconstruction using convolutional neural network representation IEEE Trans Med Imag 38 675-85