On Riesz Decomposition for Super-Polyharmonic Functions in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document}

被引:0
作者
Alexander V. Tovstolis
机构
[1] Oklahoma State University,
关键词
Riesz potential; Riesz decomposition; Super-polyharmonic function; Polyharmonic function; Integral means; 31B10; 31B15; 31B30; 31C05; 31C15;
D O I
10.1007/s11118-015-9474-5
中图分类号
学科分类号
摘要
The classical Riesz Decomposition Theorem is a powerful tool describing superharmonic functions on compact subsets of ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document}. There is also the global version of this result dealing with functions superharmonic in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document} and satisfying an additional condition. Recently, a generalization of this result for superbiharmonic functions in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^{n}$\end{document} was obtained by (J. Anal. Math. 60, 113–133 2006). We consider its further generalization for m-superharmonic functions.
引用
收藏
页码:341 / 360
页数:19
相关论文
共 10 条
[1]  
Brauchart JS(2009)Riesz extremal measures on the sphere for axis-supported external fields J. Math. Anal. Appl. 356 769-792
[2]  
Dragnev PD(2011)A Montel type result for super-polyharmonic functions on RN Potential Anal. 34 89-100
[3]  
Saff EB(1993)Representation and uniqueness theorems for polyharmonic functions J. Anal. Math. 60 113-133
[4]  
Futamura T(2006)Spherical means and Riesz decomposition for superbiharmonic functions J. Math. Soc. Jpn. 58 521-533
[5]  
Kitaura K(undefined)undefined undefined undefined undefined-undefined
[6]  
Mizuta Y(undefined)undefined undefined undefined undefined-undefined
[7]  
Hayman WK(undefined)undefined undefined undefined undefined-undefined
[8]  
Korenblum B(undefined)undefined undefined undefined undefined-undefined
[9]  
Kitaura K(undefined)undefined undefined undefined undefined-undefined
[10]  
Mizuta Y(undefined)undefined undefined undefined undefined-undefined