A Self-Consistent Ornstein–Zernike Approximation for the Random Field Ising Model

被引:0
|
作者
E. Kierlik
M. L. Rosinberg
G. Tarjus
机构
[1] Université Pierre et Marie Curie,Laboratoire de Physique Théorique des Liquides, (Unité de Recherche Associée au CNRS; UMR 7600)
来源
Journal of Statistical Physics | 1999年 / 94卷
关键词
disordered systems; Ornstein–Zernike equations; random field Ising model;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the self-consistent Ornstein–Zernike approximation (SCOZA), first formulated in the context of liquid-state theory, to the study of the random field Ising model. Within the replica formalism, we treat the quenched random field just as another spin variable, thereby avoiding the usual average over the random field distribution. This allows us to study the influence of the distribution on the phase diagram in finite dimensions. The thermodynamics and the correlation functions are obtained as solutions of a set a coupled partial differential equations with magnetization, temperature, and disorder strength as independent variables. A preliminary analysis based on high-temperature and 1/d series expansions shows that the theory can predict accurately the dependence of the critical temperature on disorder strength (no sharp transition, however, occurs for d≤4). For the bimodal distribution, we find a tricritical point which moves to weaker fields as the dimension is reduced. For the Gaussian distribution, a tricritical point may appear for d around 4.
引用
收藏
页码:805 / 836
页数:31
相关论文
共 50 条
  • [1] A self-consistent Ornstein-Zernike approximation for the random field Ising model
    Kierlik, E
    Rosinberg, ML
    Tarjus, G
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 805 - 836
  • [2] A self-consistent Ornstein-Zernike approximation for the site-diluted Ising model
    E. Kierlik
    M. L. Rosinberg
    G. Tarjus
    Journal of Statistical Physics, 1997, 89 : 215 - 232
  • [3] A self-consistent Ornstein-Zernike approximation for the site-diluted Ising model
    Kierlik, E
    Rosinberg, ML
    Tarjus, G
    JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (1-2) : 215 - 232
  • [4] A Self-Consistent Ornstein–Zernike Approximation for the Edwards–Anderson Spin-Glass Model
    E. Kierlik
    M. L. Rosinberg
    G. Tarjus
    Journal of Statistical Physics, 2000, 100 : 423 - 443
  • [5] A self-consistent Ornstein-Zernike approximation for the Edwards-Anderson spin-glass model
    Kierlik, E
    Rosinberg, ML
    Tarjus, G
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (1-2) : 423 - 443
  • [6] Random field Ising model in a random graph
    Doria, F. F.
    Erichsen, R., Jr.
    Dominguez, D.
    Gonzalez, Mario
    Magalhaes, S. G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 422 : 58 - 65
  • [8] Review of Recent Developments in the Random-Field Ising Model
    Nikolaos G. Fytas
    Víctor Martín-Mayor
    Marco Picco
    Nicolas Sourlas
    Journal of Statistical Physics, 2018, 172 : 665 - 672
  • [9] Review of Recent Developments in the Random-Field Ising Model
    Fytas, Nikolaos G.
    Martin-Mayor, Victor
    Picco, Marco
    Sourlas, Nicolas
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) : 665 - 672
  • [10] A Note on Exponential Decay in the Random Field Ising Model
    Federico Camia
    Jianping Jiang
    Charles M. Newman
    Journal of Statistical Physics, 2018, 173 : 268 - 284