Universality aspects of the trimodal random-field Ising model

被引:0
作者
N.G. Fytas
P.E. Theodorakis
I. Georgiou
机构
[1] Universidad Complutense,Departamento de Física Teórica I
[2] University of Vienna,Faculty of Physics
[3] Vienna University of Technology,Institute for Theoretical Physics and Center for Computational Materials Science
[4] Vienna Computational Materials Laboratory,undefined
来源
The European Physical Journal B | 2012年 / 85卷
关键词
Statistical and Nonlinear Physics;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the critical properties of the d = 3 random-field Ising model with an equal-weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we compute large ensembles of ground states for several values of the disorder strength h and system sizes up to N = 1283. Using a new approach based on the sample-to-sample fluctuations of the order parameter of the system and proper finite-size scaling techniques we estimate the critical disorder strength hc = 2.747(3) and the critical exponents of the correlation length ν = 1.34(6) and order parameter β = 0.016(4). These estimates place the model into the universality class of the corresponding Gaussian random-field Ising model.
引用
收藏
相关论文
共 213 条
[1]  
Imry Y.(1975)undefined Phys. Rev. Lett. 35 1399-undefined
[2]  
Ma S.-K.(1976)undefined Phys. Rev. Lett. 37 1364-undefined
[3]  
Aharony A.(1977)undefined J. Phys.: Condens. Matter 10 L257-undefined
[4]  
Imry Y.(1979)undefined J. Phys.: Condens. Matter 12 L729-undefined
[5]  
Ma S.-K.(1979)undefined Phys. Rev. Lett. 43 744-undefined
[6]  
Young A.P.(1984)undefined Phys. Rev. B 29 505-undefined
[7]  
Fishman S.(1984)undefined Phys. Rev. Lett. 53 1747-undefined
[8]  
Aharony A.(1985)undefined Phys. Rev. Lett. 55 2499-undefined
[9]  
Parisi G.(1986)undefined Phys. Rev. B 33 2059-undefined
[10]  
Sourlas N.(1985)undefined J. Phys.: Condens. Matter 18 135-undefined