Computation of Viscous Flow between Two Arbitrarily Moving Cylinders of Arbitrary Cross Section

被引:0
作者
A. O. Kazakova
A. G. Petrov
机构
[1] Chuvash State University,
[2] Ishlinsky Institute for Problems in Mechanics,undefined
[3] Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2019年 / 59卷
关键词
viscous flow; Stokes approximation; stream function; biharmonic equation; boundary element method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1030 / 1048
页数:18
相关论文
共 28 条
[1]  
Joukowski N. E.(1906)“On friction of a lubricating layer between the dowel and the bearing,” Tr. Otd Fiz Nauk Ob–va Lyubitelei Estestvoznan. 13 24-33
[2]  
Chaplygin S. A.(1904)Zur hydrodinamishen Theorie der Schmiermittelreibung Z. Math. Phys. 50 97-294
[3]  
Sommerfeld A.(1976)Flow of a Newtonian fluid between eccentric rotating cylinders: Inertial effects Arch. Rational Mech. Anal. 62 237-22
[4]  
Ballal B. Y.(2008)Exact solution for creeping cylindrical flow in a free-dowel bearing Dokl. Phys. 53 19-320
[5]  
Rivlin R. S.(2016)Viscous fluid velocity field between two cylinders which rotate and move translationally Fluid Dyn. 51 311-106
[6]  
Chernyavskii V. M.(1851)On the effect of the internal friction of fluids on the motion of pendulums Trans. Cambridge Phil. Soc. 9 8-149
[7]  
Kazakova A. O.(1984)Numerical solution of boundary value problems for fourth-order elliptic equations USSR Comput. Math. Math. Phys. 24 143-573
[8]  
Petrov A. G.(1995)The method of step by step inversion for numerical solution of the biharmonic equation Sib. Math. J. 36 569-10
[9]  
Stokes G. G.(1994)The boundary element method for the solution of slow flow problems for which a paradoxical situation arises WIT Trans. Model. Simul. 9 3-48
[10]  
Vabishchevich P. N.(2016)“Numerical solution of a plane elasticity problem in a multiply connected domain,” Vestn. Chuvash. Gos. Ped. Univ. im. I.Ya. Yakovleva Ser. Mekh. Predel. Sostoyan. 28 35-2059