hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation
被引:0
|
作者:
Igor Mozolevski
论文数: 0引用数: 0
h-index: 0
机构:Federal University of Santa Catarina,Mathematics Department
Igor Mozolevski
Endre Süli
论文数: 0引用数: 0
h-index: 0
机构:Federal University of Santa Catarina,Mathematics Department
Endre Süli
Paulo R. Bösing
论文数: 0引用数: 0
h-index: 0
机构:Federal University of Santa Catarina,Mathematics Department
Paulo R. Bösing
机构:
[1] Federal University of Santa Catarina,Mathematics Department
[2] University of Oxford,Computing Laboratory
[3] University of São Paulo,Applied Mathematics Department, IME
来源:
Journal of Scientific Computing
|
2007年
/
30卷
关键词:
High-order elliptic equations;
finite element methods;
discontinuous Galerkin methods;
error analysis;
linear functionals;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{R}^d, d \geqslant 2$$\end{document}. For a shape-regular family of meshes consisting of parallelepipeds, we derive hp-version a priori bounds on the global error measured in the L2 norm and in broken Sobolev norms. Using these, we obtain hp-version bounds on the error in linear functionals of the solution. The bounds are optimal with respect to the mesh size h and suboptimal with respect to the degree of the piecewise polynomial approximation p. The theoretical results are confirmed by numerical experiments, and some practical applications in Poisson–Kirchhoff thin plate theory are presented.
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Wang, Liang
Xiong, Chunguang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Xiong, Chunguang
Wu, Huibin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Wu, Huibin
Luo, Fusheng
论文数: 0引用数: 0
h-index: 0
机构:
State Ocean Adm, Inst Oceanog 3, China 178 Daxue Rd, Xiamen 361005, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Xiong, Chunguang
Becker, Roland
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau, Inst Appl Math, F-64000 Pau, FranceBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Becker, Roland
Luo, Fusheng
论文数: 0引用数: 0
h-index: 0
机构:
State Ocean Adm, Inst Oceanog 3, China 178 Daxue Rd, Xiamen 361005, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Luo, Fusheng
Ma, Xiuling
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Dept Math, Beijing 100081, Peoples R China