hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation

被引:0
|
作者
Igor Mozolevski
Endre Süli
Paulo R. Bösing
机构
[1] Federal University of Santa Catarina,Mathematics Department
[2] University of Oxford,Computing Laboratory
[3] University of São Paulo,Applied Mathematics Department, IME
来源
Journal of Scientific Computing | 2007年 / 30卷
关键词
High-order elliptic equations; finite element methods; discontinuous Galerkin methods; error analysis; linear functionals;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^d, d \geqslant 2$$\end{document}. For a shape-regular family of meshes consisting of parallelepipeds, we derive hp-version a priori bounds on the global error measured in the L2 norm and in broken Sobolev norms. Using these, we obtain hp-version bounds on the error in linear functionals of the solution. The bounds are optimal with respect to the mesh size h and suboptimal with respect to the degree of the piecewise polynomial approximation p. The theoretical results are confirmed by numerical experiments, and some practical applications in Poisson–Kirchhoff thin plate theory are presented.
引用
收藏
页码:465 / 491
页数:26
相关论文
共 50 条