Spanning Trees on the Sierpinski Gasket

被引:0
作者
Shu-Chiuan Chang
Lung-Chi Chen
Wei-Shih Yang
机构
[1] National Cheng Kung University,Department of Physics
[2] National Taiwan University,Physics Division, National Center for Theoretical Science
[3] Fu Jen Catholic University,Department of Mathematics
[4] Temple University,Department of Mathematics
来源
Journal of Statistical Physics | 2007年 / 126卷
关键词
Spanning trees; Sierpinski gasket; exact solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We present the numbers of spanning trees on the Sierpinski gasket SGd(n) at stage n with dimension d equal to two, three and four. The general expression for the number of spanning trees on SGd(n) with arbitrary d is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3,4 are also obtained.
引用
收藏
页码:649 / 667
页数:18
相关论文
共 47 条
[1]  
Kirchhoff G.(1847)Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird Ann. Phys. Chem. 72 497-508
[2]  
Burton R.(1993)Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances Ann. Probab. 21 1329-1371
[3]  
Pemantle R.(2005)Asymptotic enumeration of spanning trees Combin. Probab. Comput. 14 491-522
[4]  
Lyons R.(1977)Number of spanning trees on a lattice J. Phys. A: Math. Gen. 10 L113-L115
[5]  
Wu F.-Y.(1972)On the random cluster model. I. Introduction and relation to other models Physica 57 536-564
[6]  
Fortuin C. M.(1982)The Potts model Rev. Mod. Phys. 54 235-268
[7]  
Kasteleyn P. W.(2006)Theoretical studies of self-organized criticality Physica A 369 29-70
[8]  
Wu F.-Y.(2000)Spanning trees on hypercubic lattices and nonorientable surfaces Appl. Math. Lett. 13 19-25
[9]  
Dhar D.(2000)Spanning trees on graphs and lattices in J. Phys. A: Math. Gen. 33 3881-3902
[10]  
Tzeng W.-J.(2006) dimensions J. Phys. A: Math. Gen. 39 5653-5658