Infinitesimal deformations of rational surface automorphisms

被引:0
作者
Julien Grivaux
机构
[1] CNRS,
[2] I2M,undefined
[3] IHÉS,undefined
来源
Mathematische Zeitschrift | 2018年 / 288卷
关键词
37F10; 14E07; 32G05;
D O I
暂无
中图分类号
学科分类号
摘要
If X is a rational surface without nonzero holomorphic vector field and f is an automorphism of X, we study in several examples the Zariski tangent space of the local deformation space of the pair (X, f).
引用
收藏
页码:1195 / 1253
页数:58
相关论文
共 32 条
  • [1] Atiyah MF(1968)A Lefschetz fixed point formula for elliptic complexes. II. Applications Ann. Math. 2 451-491
  • [2] Bott R(2006)Periodicities in linear fractional recurrences: degree growth of birational surface maps Mich. Math. J. 54 647-670
  • [3] Bedford E(2010)Continuous families of rational surface automorphisms with positive entropy Math. Ann. 348 667-688
  • [4] Kim K(2008)On the inertia group of elliptic curves in the Cremona group of the plane Mich. Math. J. 56 315-330
  • [5] Bedford E(2012)Embeddings of Transform. Groups 17 21-50
  • [6] Kim K(2012) into the Cremona group J. Am. Math. Soc. 25 863-905
  • [7] Blanc J(2003)Rational surfaces with a large group of automorphisms J. Reine Angew. Math. 561 199-235
  • [8] Blanc J(2011)Symétries birationnelles des surfaces feuilletées Indiana Univ. Math. J. 60 1589-1622
  • [9] Déserti J(2007)Automorphisms of rational surfaces with positive entropy Trans. Am. Math. Soc. 359 2793-2991
  • [10] Cantat S(1981)Invariant curves for birational surface maps Math. Z. 178 449-473