共 130 条
[41]
Rodionov AV(2010)On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes J. Comput. Phys. 229 8918-8934
[42]
Bell JB(2011)Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms J. Comput. Phys. 230 1238-1248
[43]
Colella P(2012)Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes J. Sci. Comput. 50 29-62
[44]
Trangenstein JA(2013)High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks Comput. Fluids 71 98-112
[45]
Men’shov IS(2013)Positivity-preserving method for high-order conservative schemes solving compressible Euler equations J. Comput. Phys. 242 169-180
[46]
Toro EF(2011)A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations J. Comput. Phys. 230 6203-6232
[47]
Titarev VA(2014)Arbitrarily high order convected scheme solution of the Vlasov–Poisson system J. Comput. Phys. 270 711-752
[48]
Toro EF(1973)Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works J. Comput. Phys. 11 38-69
[49]
Titarev VA(1975)Flux-corrected transport II: generalizations of the method J. Comput. Phys. 18 248-283
[50]
Qiu J(1976)Flux-corrected transport. III. Minimal-error FCT algorithms J. Comput. Phys. 20 397-431