Hardy spaces H1 for Schrödinger operators with compactly supported potentials

被引:0
|
作者
Jacek Dziubański
Jacek Zienkiewicz
机构
[1] University of Wrocław,Institute of Mathematics
关键词
Hardy spaces; atomic decomposition; Schrödinger operators;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=-Δ+V be a Schrödinger operator on ℝd, d≥3, where V is a non-negative compactly supported potential that belongs to Lp for some p>d/2. Let {Kt}t>0 denote the semigroup of linear operators generated by -L. For a function f we define its H1L-norm by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\| f\|_{H^1_L}=\| \sup_{t>0} |K_t f(x)|\|_{L^1(dx)}$\end{document}. It is proved that for a properly defined weight w a function f belongs to H1L if and only if wf∈H1(ℝd), where H1(ℝd) is the classical real Hardy space.
引用
收藏
页码:315 / 326
页数:11
相关论文
共 50 条