Solitary waves for power-law regularized long-wave equation and R(m,n) equation

被引:0
作者
Anjan Biswas
机构
[1] Delaware State University,Center for Research and Education in Optical Sciences and Applications, Department of Applied Mathematics and Theoretical Physics
来源
Nonlinear Dynamics | 2010年 / 59卷
关键词
Solitons; Integrability; Integrals of motion;
D O I
暂无
中图分类号
学科分类号
摘要
This paper integrates the regularized long-wave equation with power-law nonlinearity using the solitary-wave ansatz. A few of the conserved quantities are calculated by using the 1-soliton solution. This technique is then extended to obtain the solitary-wave solution of the R(m,n) equation and a conserved quantity is also calculated for this generalized equation.
引用
收藏
页码:423 / 426
页数:3
相关论文
共 17 条
[1]  
Ali A.H.A.(2008)Spectral methods for solving the equal width equation based on Chebyshev polynomials Nonlinear Dyn. 51 59-70
[2]  
Biswas A.(2008)1-soliton solution of the Phys. Lett. A 372 4601-4602
[3]  
Biswas A.(2009)( Commun. Nonlinear Sci. Numer. Simul. 14 3226-3229
[4]  
Dag I.(2001), Appl. Math. Model. 25 221-231
[5]  
Ozer M.N.(2008)) equation with generalized evolution Appl. Math. Comput. 198 715-720
[6]  
Feng D.(2009)1-soliton solution of the Commun. Nonlinear Sci. Numer. Simul. 14 1881–1890-505
[7]  
Li J.(2006)( Chaos Solitons Fractals 29 499-989
[8]  
Lü J.(2009), Appl. Math. Lett. 22 984-636
[9]  
He T.(2005)) equation with generalized evolution Appl. Math. Comput. 161 623-327
[10]  
Kudryashov N.A.(2007)Approximation of the RLW equation by the least square cubic B-spline finite element method Commun. Nonlinear Sci. Numer. Simul. 12 314-undefined