Global Strong Solutions to the 3D Incompressible Heat-Conducting Magnetohydrodynamic Flows

被引:0
作者
Mengkun Zhu
Mingtong Ou
机构
[1] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
[2] Huaqiao University,School of Mathematical Sciences
来源
Mathematical Physics, Analysis and Geometry | 2019年 / 22卷
关键词
Heat-conducting; Magnetohydrodynamic flows; Density-temperature-dependent viscosity and resistivity; Decay; Vacuum; 35B45; 76D03; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove that there exists a global strong solution to the 3D inhomogeneous incompressible heat-conducting magnetohydrodynamic equations with density-temperature-dependent viscosity and resistivity coefficients in a bounded domain Ω⊂ℝ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Omega } \subset \mathbb {R}^{3}$\end{document}. Let ρ0, u0, b0 be the initial density, velocity and magnetic, respectively. Through some time-weighted a priori estimates, we study the global existence of strong solutions to the initial boundary value problem under the condition that ∥ρ0u0∥L22+∥b0∥L22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|\sqrt {\rho _{0}} u_{0}\|_{L^{2}}^{2} + \|b_{0}\|_{L^{2}}^{2}$\end{document} is small. Moreover, we establish some decay estimates for the strong solutions.
引用
收藏
相关论文
共 55 条
  • [1] Chen Q(2011)Strong solutions to the incompressible magnetohydrodynamic equations Math. Methods Appl. Sci. 34 94-107
  • [2] Tan Z(2003)Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids Comm. Partial Differ. Equ. 28 1183-1201
  • [3] Wang YJ(2008)Existence result for heat-conducting viscous incompressible fluids with vacuum J. Korean Math. Soc. 45 645-681
  • [4] Choe HJ(2013)Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations J. Math. Fluid Mech. 15 747-758
  • [5] Kim H(2010)Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids Commun. Partial Differ. Equ. 35 1891-1919
  • [6] Cho Y(2014)Global existence of strong solutions to incompressible MHD Commun. Pure Appl. Anal. 13 1553-1561
  • [7] Kim H(2013)Global strong solution to the 2D nonhomogeneous incompressible MHD system J. Differ. Equ. 254 511-527
  • [8] Craig W(2014)Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system SIAM J. Math. Anal. 46 1771-1788
  • [9] Huang X(2015)Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity J. Differential Equ. 259 1606-1627
  • [10] Wang Y(2014)Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces Appl. Anal. 93 356-368