Finite groups with S-quasinormally embedded or SS-quasinormal subgroups

被引:0
作者
Qingjun Kong
机构
[1] Tianjin Polytechnic University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2014年 / 142卷
关键词
-quasinormally embedded subgroup; -quasinormal subgroup; saturated formation; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be S-quasinormally embedded in G if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G; H is said to be an SS-quasinormal subgroup of G if there is a subgroup B of G such that G=HB and H permutes with every Sylow subgroup of B. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1<|D|<|P| and study the structure of G under the assumption that every subgroup H of P with |H|=|D| is either S-quasinormally embedded or SS-quasinormal in G. Some recent results are generalized and unified.
引用
收藏
页码:459 / 467
页数:8
相关论文
共 30 条
[1]  
Ballester-Bolinches A.(2013)On Monatsh. Math. 127 113-118
[2]  
Li Y.(1998)-permutably embedded subgroups of finite groups J. Pure Appl. Algebra 82 125-132
[3]  
Ballester-Bolinches A.(1963)Sufficient conditions for supersolvability of finite groups Math. Z. 78 205-221
[4]  
Pedraza-Aquilera M. C.(1962)On quasinormal subgroups of finite groups Math. Z. 36 4436-4447
[5]  
Deskins W. E.(2008)Sylow Gruppen und subnormalteiler endlicher Gruppen Comm. Algebra 319 4275-4287
[6]  
Kegel O. H.(2008)on J. Algebra 81 245-252
[7]  
Li S.(2003)-quasinormal subgroups of finite subgroups Arch. Math. 131 337-341
[8]  
Shen Z.(2002)The influence of Proc. Amer. Math. Soc. 108 283-298
[9]  
Kong X.(2005)-quasinormality of some subgroups on the structure of finite groups Acta Math. Hungar. 315 192-209
[10]  
Li S.(2007)The influence of J. Algebra 207 285-293