Compact Operators that Commute with a Contraction

被引:0
作者
K. Kellay
M. Zarrabi
机构
[1] Université de Provence,CMI LATP UMR–CNRS 6632
[2] Université de Bordeaux,IMB UMR–CNRS 5352
来源
Integral Equations and Operator Theory | 2009年 / 65卷
关键词
Primary 47B05; Secondary 30H05; Compact operators; essentially unitary; commutant;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a C0–contraction on a separable Hilbert space. We assume that IH − T*T is compact. For a function f holomorphic in the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} and continuous on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathbb{D}}}$$\end{document}, we show that f(T) is compact if and only if f vanishes on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma(T)\cap{\mathbb{T}}$$\end{document}, where σ(T) is the spectrum of T and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}}$$\end{document} the unit circle. If f is just a bounded holomorphic function on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document}, we prove that f(T) is compact if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim\limits_{n\rightarrow \infty}\|T^{n}f(T)\| = 0$$\end{document}.
引用
收藏
相关论文
empty
未找到相关数据