Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian

被引:0
作者
Miaomiao Cai
Fengquan Li
Pengyan Wang
机构
[1] Zhengzhou University of Aeronautics,School of Mathematics
[2] Dalian University of Technology,School of Mathematical Sciences
[3] Xinyang Normal University,School of Mathematics and Statistics
来源
Fractional Calculus and Applied Analysis | 2022年 / 25卷
关键词
Fully nonlinear parabolic equation; Fractional Laplacian; Maximum principles; Symmetry; Hopf lemma; 35K55; 35B09; 35B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider fully nonlinear parabolic problems involving the fractional Laplacian. Hopf type lemmas for both on bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} with smooth boundary and half space are obtained. When Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a ball or the whole space, we obtain the radial symmetry results of positive solutions. Our results are an extension of Li-Nirenberg [19], Li-Chen [18] and Wang-Chen [24].
引用
收藏
页码:1037 / 1054
页数:17
相关论文
共 32 条
  • [1] Birindelli I(1995)Hopf’s Lemma and anti-maximum principle in general domains J. Differential Equations 119 450-472
  • [2] Caffarelli L(2007)An extension problem related to the fractional Laplacian Commun. Partial Differential Equations 32 1245-1260
  • [3] Silvestre L(2017)A direct method of moving planes for the fractional Laplacian Adv. Math. 308 404-437
  • [4] Chen WX(2005)Qualitative properties of solutions for an integral equation Discrete Contin. Dyn. Syst. 12 347-354
  • [5] Li CM(2020)A Hopf lemma and regularity for fractional Discrete Contin. Dyn. Syst. 40 3235-3252
  • [6] Li Y(1979)-Laplacians Commun. Math. Phys. 68 209-243
  • [7] Chen WX(1927)Symmetry and related properties via the maximum principle Sitz. Ber. Preuss. Akad. Wissensch. Berlin 19 147-152
  • [8] Li CM(2016)Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus Math. Res. Lett. 23 863-885
  • [9] Ou B(2014)Hopf’s lemma and constrained radial symmetry for the fractional Laplacian Discrete Contin. Dyn. Syst. 34 2581-2615
  • [10] Chen WX(2016)Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations Ann. Mat. Pura Appl. 195 273-291