Constrained SUSY seesaws with a 125 GeV Higgs

被引:0
作者
M. Hirsch
F. R. Joaquim
A. Vicente
机构
[1] AHEP Group,Departamento de Física and Centro de Física Teórica de Partículas, Instituto Superior Técnico
[2] Instituto de Física Corpuscular — C.S.I.C./Universitat de València,undefined
[3] Edificio de Institutos de Paterna,undefined
[4] Universidade Técnica de Lisboa,undefined
[5] Laboratoire de Physique Théorique,undefined
[6] CNRS — UMR 8627,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Higgs Physics; Rare Decays; Neutrino Physics; Supersymmetric Standard Model;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {m_{{{h^0}}}}\simeq 125 $\end{document} GeV at low energies, one is forced into regions of parameter space with very large values of m0, M1/2 or A0. We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {m_{{{h^{{^0}}}}}} $\end{document} (extracted from the 2011-2012 data), and discuss the possibility of distinguishing seesaw models in view of future results on SUSY searches. In particular, we briefly comment on the discovery potential of LHC upgrades, for squark/gluino mass ranges required by present Higgs mass constraints. A discrimination between different seesaw models cannot rely on the Higgs mass data alone, therefore we also take into account the MEG upper limit on BR(μ → eγ) and show that, in some cases, this may help to restrict the SUSY parameter space, as well as to set complementary limits on the seesaw scale.
引用
收藏
相关论文
共 312 条
[71]  
Cerdeno D(2010)How can we test seesaw experimentally? Nucl. Phys. A 844 150-undefined
[72]  
Ibáñez L(2001)New limit on the lepton-flavour violating decay μ Rev. Mod. Phys. 73 151-undefined
[73]  
Roszkowski L(2008) → e Eur. Phys. J. C 57 13-undefined
[74]  
Sessolo EM(2003)γ Comput. Phys. Commun. 153 275-undefined
[75]  
Tsai Y-LS(2012)Oscillating neutrinos and muon → e, γ Comput. Phys. Commun. 183 2458-undefined
[76]  
Ellis J(1994)Running effects on neutrino parameters and l(i) → l(j)γ predictions in the triplet-extended MSSM Phys. Rev. D 50 3537-undefined
[77]  
Olive KA(1994)Supersymmetric adjoint SU(5) Phys. Lett. B 333 372-undefined
[78]  
Baer H(2003)MEG experiment at the Paul Scherrer Institute Nucl. Phys. B 657 333-undefined
[79]  
Barger V(1997)Muon decay and physics beyond the standard model Nucl. Phys. B 491 3-undefined
[80]  
Mustafayev A(2001)Flavour physics of leptons and dipole moments Nucl. Phys. B 611 403-undefined