The hyperbolic rank of homogeneous Hadamard manifolds

被引:0
作者
Thomas Foertsch
机构
[1] Universität Zürich,
[2] Mathematisches Institut,undefined
[3] Winterthurerstrasse 190,undefined
[4] CH-8057 Zürich,undefined
[5] Switzerland. e-mail: foertsch@math.unizh.ch,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
Symmetric Space; Hyperbolic Space; Analogue Statement; Riemannian Product; Hadamard Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
 From results in [BrFa] it follows that for Riemannian products of real hyperbolic spaces the sum of the Euclidean rank and the hyperbolic rank is at least the product's dimension. In [Leu] the author proved that, more generally, the same holds for symmetric spaces of non-compact type. In this paper we prove the analogue statement for arbitrary homogeneous Hadamard manifolds.
引用
收藏
页码:109 / 120
页数:11
相关论文
共 50 条
[41]   Asymptotically Hyperbolic Manifolds with Small Mass [J].
Mattias Dahl ;
Romain Gicquaud ;
Anna Sakovich .
Communications in Mathematical Physics, 2014, 325 :757-801
[42]   MIRROR SYMMETRIES OF HYPERBOLIC TETRAHEDRAL MANIFOLDS [J].
Derevnin, Dmitry Alexandrovich ;
Mednykh, Alexandr Dmitrievich .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 :1850-1856
[43]   Penalty function method for a variational inequality on Hadamard manifolds [J].
Kumari, Babli ;
Ahmad, Izhar .
OPSEARCH, 2023, 60 (01) :527-538
[44]   An explicit extragradient algorithm for equilibrium problems on Hadamard manifolds [J].
Fan, Jingjing ;
Tan, Bing ;
Li, Songxiao .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (02)
[45]   Rate of convergence for proximal point algorithms on Hadamard manifolds [J].
Tang, Guo-ji ;
Huang, Nan-jing .
OPERATIONS RESEARCH LETTERS, 2014, 42 (6-7) :383-387
[46]   New Characterization of Geodesic Convexity on Hadamard Manifolds with Applications [J].
Li-wen Zhou ;
Yi-bin Xiao ;
Nan-jing Huang .
Journal of Optimization Theory and Applications, 2017, 172 :824-844
[47]   Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems [J].
Glaydston de Carvalho Bento ;
João Xavier Cruz Neto ;
Ítalo Dowell Lira Melo .
Journal of Optimization Theory and Applications, 2022, 195 :1087-1105
[48]   Solutions of Optimization Problems on Hadamard Manifolds with Lipschitz Functions [J].
Ruiz-Garzon, Gabriel ;
Osuna-Gomez, Rafaela ;
Rufian-Lizana, Antonio .
SYMMETRY-BASEL, 2020, 12 (05)
[49]   AN EXTRAGRADIENT METHOD FOR VECTOR EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS [J].
Iusem, Alfredo N. ;
Mohebbi, Vahid .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (03) :459-476
[50]   Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems [J].
Bento, Glaydston de Carvalho ;
Cruz Neto, Joao Xavier ;
Lira Melo, Italo Dowell .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) :1087-1105