The hyperbolic rank of homogeneous Hadamard manifolds

被引:0
作者
Thomas Foertsch
机构
[1] Universität Zürich,
[2] Mathematisches Institut,undefined
[3] Winterthurerstrasse 190,undefined
[4] CH-8057 Zürich,undefined
[5] Switzerland. e-mail: foertsch@math.unizh.ch,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
Symmetric Space; Hyperbolic Space; Analogue Statement; Riemannian Product; Hadamard Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
 From results in [BrFa] it follows that for Riemannian products of real hyperbolic spaces the sum of the Euclidean rank and the hyperbolic rank is at least the product's dimension. In [Leu] the author proved that, more generally, the same holds for symmetric spaces of non-compact type. In this paper we prove the analogue statement for arbitrary homogeneous Hadamard manifolds.
引用
收藏
页码:109 / 120
页数:11
相关论文
共 50 条
[21]   ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS ON HADAMARD MANIFOLDS [J].
Li, Chong ;
Lopez, Genaro ;
Martin-Marquez, Victoria .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02) :541-559
[22]   Minkowski Inequality in Cartan-Hadamard Manifolds [J].
Ghomi, Mohammad ;
Spruck, Joel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (20) :17892-17910
[23]   A Cartan–Hadamard Theorem for Banach–Finsler Manifolds [J].
Karl-Hermann Neeb .
Geometriae Dedicata, 2002, 95 :115-156
[24]   What Do 'Convexities' Imply on Hadamard Manifolds? [J].
Kristaly, Alexandru ;
Li, Chong ;
Lopez-Acedo, Genaro ;
Nicolae, Adriana .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) :1068-1074
[25]   ON THE CONVERGENCE OF SOLUTIONS TO A DIFFERENCE INCLUSION ON HADAMARD MANIFOLDS [J].
Ahmadi, P. ;
Khatibzadeh, H. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04) :1045-1059
[26]   Translating Solitons Over Cartan–Hadamard Manifolds [J].
Jean-Baptiste Casteras ;
Esko Heinonen ;
Ilkka Holopainen ;
Jorge H. De Lira .
The Journal of Geometric Analysis, 2023, 33
[27]   What Do ‘Convexities’ Imply on Hadamard Manifolds? [J].
Alexandru Kristály ;
Chong Li ;
Genaro López-Acedo ;
Adriana Nicolae .
Journal of Optimization Theory and Applications, 2016, 170 :1068-1074
[28]   Existence of Solutions for Vector Optimization on Hadamard Manifolds [J].
Li-Wen Zhou ;
Nan-Jing Huang .
Journal of Optimization Theory and Applications, 2013, 157 :44-53
[29]   Some algorithms for equilibrium problems on Hadamard manifolds [J].
Noor, Muhammad Aslam ;
Noor, Khalida Inayat .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[30]   Modified proximal point algorithms on Hadamard manifolds [J].
Wang, Jin-Hua ;
Lopez, Genaro .
OPTIMIZATION, 2011, 60 (06) :697-708