The hyperbolic rank of homogeneous Hadamard manifolds

被引:0
作者
Thomas Foertsch
机构
[1] Universität Zürich,
[2] Mathematisches Institut,undefined
[3] Winterthurerstrasse 190,undefined
[4] CH-8057 Zürich,undefined
[5] Switzerland. e-mail: foertsch@math.unizh.ch,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
Symmetric Space; Hyperbolic Space; Analogue Statement; Riemannian Product; Hadamard Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
 From results in [BrFa] it follows that for Riemannian products of real hyperbolic spaces the sum of the Euclidean rank and the hyperbolic rank is at least the product's dimension. In [Leu] the author proved that, more generally, the same holds for symmetric spaces of non-compact type. In this paper we prove the analogue statement for arbitrary homogeneous Hadamard manifolds.
引用
收藏
页码:109 / 120
页数:11
相关论文
共 50 条
  • [21] What Do ‘Convexities’ Imply on Hadamard Manifolds?
    Alexandru Kristály
    Chong Li
    Genaro López-Acedo
    Adriana Nicolae
    Journal of Optimization Theory and Applications, 2016, 170 : 1068 - 1074
  • [22] ON THE CONVERGENCE OF SOLUTIONS TO A DIFFERENCE INCLUSION ON HADAMARD MANIFOLDS
    Ahmadi, P.
    Khatibzadeh, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04): : 1045 - 1059
  • [23] Translating Solitons Over Cartan–Hadamard Manifolds
    Jean-Baptiste Casteras
    Esko Heinonen
    Ilkka Holopainen
    Jorge H. De Lira
    The Journal of Geometric Analysis, 2023, 33
  • [24] Vector variational inequality with pseudoconvexity on Hadamard manifolds
    Chen, Sheng-lan
    Fang, Chang-jie
    OPTIMIZATION, 2016, 65 (12) : 2067 - 2080
  • [25] Generalized vector equilibrium problems on Hadamard manifolds
    Jana, Shreyasi
    Nahak, Chandal
    Ionescu, Cristiana
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1402 - 1409
  • [26] FENCHEL DUALITY AND A SEPARATION THEOREM ON HADAMARD MANIFOLDS
    Louzeiro, Mauricio Silva
    Bergmann, Ronny
    Herzog, Roland
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 854 - 873
  • [27] Some algorithms for equilibrium problems on Hadamard manifolds
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [28] Existence of Solutions for Vector Optimization on Hadamard Manifolds
    Li-Wen Zhou
    Nan-Jing Huang
    Journal of Optimization Theory and Applications, 2013, 157 : 44 - 53
  • [29] An extragradient method for equilibrium problems on Hadamard manifolds
    Cruz Neto, J. X.
    Santos, P. S. M.
    Soares, P. A., Jr.
    OPTIMIZATION LETTERS, 2016, 10 (06) : 1327 - 1336
  • [30] An extragradient method for equilibrium problems on Hadamard manifolds
    J. X. Cruz Neto
    P. S. M. Santos
    P. A. Soares
    Optimization Letters, 2016, 10 : 1327 - 1336