The hyperbolic rank of homogeneous Hadamard manifolds

被引:0
|
作者
Thomas Foertsch
机构
[1] Universität Zürich,
[2] Mathematisches Institut,undefined
[3] Winterthurerstrasse 190,undefined
[4] CH-8057 Zürich,undefined
[5] Switzerland. e-mail: foertsch@math.unizh.ch,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
Symmetric Space; Hyperbolic Space; Analogue Statement; Riemannian Product; Hadamard Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
 From results in [BrFa] it follows that for Riemannian products of real hyperbolic spaces the sum of the Euclidean rank and the hyperbolic rank is at least the product's dimension. In [Leu] the author proved that, more generally, the same holds for symmetric spaces of non-compact type. In this paper we prove the analogue statement for arbitrary homogeneous Hadamard manifolds.
引用
收藏
页码:109 / 120
页数:11
相关论文
共 50 条
  • [1] Horospheres and hyperbolicity of Hadamard manifolds
    Itoh, Mitsuhiro
    Satoh, Hiroyasu
    Suh, Young Jin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 50 - 68
  • [2] Comparison Theorems on Convex Hypersurfaces in Hadamard Manifolds
    Alexandr A. Borisenko
    Vicente Miquel
    Annals of Global Analysis and Geometry, 2002, 21 : 191 - 202
  • [3] Comparison theorems on convex hypersurfaces in Hadamard manifolds
    Borisenko, AA
    Miquel, V
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) : 191 - 202
  • [4] SECTION THEOREMS IN HADAMARD MANIFOLDS
    Huang, Shuechin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (06) : 1189 - 1203
  • [5] Product of Resolvents on Hadamard Manifolds
    Ahmadi, Fatemeh
    Ahmadi, Parviz
    Khatibzadeh, Hadi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [6] On the Spectrum of Certain Hadamard Manifolds
    Ballmann, Werner
    Mukherjee, Mayukh
    Polymerakis, Panagiotis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [7] Equilibrium problems in Hadamard manifolds
    Colao, Vittorio
    Lopez, Genaro
    Marino, Giuseppe
    Martin-Marquez, Victoria
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 61 - 77
  • [8] On the geometry in the large of Hadamard manifolds
    Stepanov, Sergey
    Tsyganok, Irina
    FILOMAT, 2023, 37 (25) : 8473 - 8479
  • [9] Extremal domains on Hadamard manifolds
    Espinar, Jose M.
    Mao, Jing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (06) : 2671 - 2707
  • [10] Convex sets in Hadamard manifolds
    Borisenko, AA
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2002, 17 (2-3) : 111 - 121