Surface-Layer Similarity Functions for Dissipation Rate and Structure Parameters of Temperature and Humidity Based on Eleven Field Experiments

被引:0
作者
Linda M. J. Kooijmans
Oscar K. Hartogensis
机构
[1] Wageningen University,Meteorology and Air Quality Group
[2] University of Groningen,Center for Isotope Research
来源
Boundary-Layer Meteorology | 2016年 / 160卷
关键词
Monin-Obukhov similarity theory; Scintillometry; Structure parameters; Turbulent kinetic energy dissipation; Turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
In the literature, no consensus can be found on the exact form of the universal funtions of Monin-Obukhov similarity theory (MOST) for the structure parameters of temperature, CT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_T}^2$$\end{document}, and humidity, Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_q}^2$$\end{document}, and the dissipation rate of turbulent kinetic energy, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. By combining 11 datasets and applying data treatment with spectral data filtering and error-weighted curve-fitting we first derived robust MOST functions of CT2,Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_T}^2, {C_q}^2$$\end{document} and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} that cover a large stability range for both unstable and stable conditions. Second, as all data were gathered with the same instrumentation and were processed in the same way—in contrast to earlier studies—we were able to investigate the similarity of MOST functions across different datasets by defining MOST functions for all datasets individually. For CT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_T}^2$$\end{document} and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} we found no substantial differences in MOST functions for datasets over different surface types or moisture regimes. MOST functions of Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_q}^2$$\end{document} differ from that of CT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_T}^2$$\end{document}, but we could not relate these differences to turbulence parameters often associated with non-local effects. Furthermore, we showed that limited stability ranges and a limited number of data points are plausible reasons for variations of MOST functions in the literature. Last, we investigated the sensitivity of fluxes to the uncertainty of MOST functions. We provide an overview of the uncertainty range for MOST functions of CT2,Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_T}^2, {C_q}^2$$\end{document} and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, and suggest their use in determining the uncertainty in surface fluxes.
引用
收藏
页码:501 / 527
页数:26
相关论文
共 276 条
[1]  
Andreas EL(1988)Estimating J Opt Soc Am 5 481-495
[2]  
Andreas EL(1989) over snow and sea ice from meteorological data J Atmos Ocean Technol 6 280-292
[3]  
Baas P(2006)Two-wavelength method of measuring path-averaged turbulent surface heat fluxes J Atmos Sci 63 3045-3054
[4]  
Steeneveld GJ(1991)Exploring self-correlation in flux-gradient relationships for stably stratified conditions J Appl Meteorol 30 327-340
[5]  
Van De Wiel BJH(2006)Flux parameterization over land surfaces for atmospheric models Boundary-Layer Meteorol 121 5-32
[6]  
Holtslag AAM(2006)Evaporation over a heterogeneous land surface: EVA GRIPS and the LITFASS-2003 experiment: an overview Boundary-Layer Meteorol 121 33-65
[7]  
Beljaars ACM(2012)Area-averaged surface fluxes over the LITFASS region on eddy-covariance measurements Boundary-Layer Meteorol 144 83-112
[8]  
Holtslag AAM(2010)Towards a validation of scintillometer measurements: the LITFASS-2009 experiment J Fluid Mech 665 480-515
[9]  
Beyrich F(2014)Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier Boundary-Layer Meteorol 153 63-87
[10]  
Mengelkamp HT(1971)Similarity relations for J Atmos Sci 28 181-189