Compact Bergman Type Operators

被引:0
作者
Lijia Ding
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Complex Analysis and Operator Theory | 2024年 / 18卷
关键词
Bergman kernel; Compact operator; Dimension; Dixmier trace; Schatten class; Macaev class; Primary 47B07; 47B10; Secondary 32A25; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}–Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} compactness of Bergman type operators, which are singular integral operators induced by the modified Bergman kernel on the complex unit ball. Moreover, we characterize Schatten class and Macaev class Bergman type integral operators on the Lebesgue space and the Bergman space by the methods of spectral estimates and operator inequalities; we also give a relatively intrinsic characterization by introducing a concept of dimension of a compact operator. The Dixmier trace of Bergman type operators is also calculated.
引用
收藏
相关论文
共 31 条
  • [1] Alpay D(2007)Toeplitz operators on Arveson and Dirichlet spaces Integr. Equ. Oper. Theory 58 1-33
  • [2] Kaptanoğlu HT(1962)On the compactness of integral operators Indag. Math. 24 235-239
  • [3] Ando T(1995)Estimates for the Bergman and Szegö projections in two symmetric domains of Colloq. Math. 68 81-100
  • [4] Békollé D(2014)- J. Geom. Anal. 24 1737-1769
  • [5] Bonami A(2017) estimates for Bergman projections in bounded symmetric domains of tube type Trans. Am. Math. Soc. 369 8643-8662
  • [6] Bonami A(2018)The hyper-singular cousin of the Bergman projection Complex Anal. Oper. Theory 12 917-929
  • [7] Garrigós G(1989)The singular integral operator induced by Drury–Arveson kernel Israel J. Math. 68 220-240
  • [8] Nana C(2022)Interpolation of compactness using Aronszajn–Gagliardo functors Adv. Math. 401 1-27
  • [9] Cheng G(2022)Schatten class Bergman-type and Szegö-type operators on bounded symmetric domains Taiwan. J. Math. 26 713-740
  • [10] Fang X(1974)The Indiana Univ. Math. J. 24 593-602