On the representation of a function as an absolutely convergent Fourier integral

被引:0
作者
E. R. Liflyand
R. M. Trigub
机构
[1] Bar-Ilan University,Department of Mathematics
[2] Donetsk National University,Faculty of Mathematics
来源
Proceedings of the Steklov Institute of Mathematics | 2010年 / 269卷
关键词
STEKLOV Institute; Fractional Derivative; Fourier Multiplier; Absolute Convergence; FOURIER Integral;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain new sufficient conditions for the representability of a function by an absolutely convergent Fourier integral in ℝd. These conditions are given in terms of the simultaneous behavior of a function and its derivatives at ∞. We test the sharpness of the conditions using well-known examples.
引用
收藏
页码:146 / 159
页数:13
相关论文
共 9 条
[1]  
Belinsky E. S.(2005)Multipliers in Russ. J. Math. Phys. 12 6-16
[2]  
Dvejrin M. Z.(1986) and Estimates for Systems of Differential Operators Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 173 3-13
[3]  
Malamud M. M.(1949)On Hörmander’s Theorem on Fourier Multipliers Acta Math. 81 225-238
[4]  
Besov O. V.(1970)On the Spectral Synthesis of Bounded Functions Acta Math. 124 9-36
[5]  
Beurling A.(2009)Inequalities for Strongly Singular Convolution Operators Georgian Math. J. 16 553-559
[6]  
Fefferman C.(1980)Necessary Conditions for Integrability of the Fourier Transform Izv. Akad. Nauk SSSR, Ser. Mat. 44 1378-1409
[7]  
Liflyand E.(2007)Absolute Convergence of Fourier Integrals, Summability of Fourier Series, and Polynomial Approximation of Functions on the Torus Mat. Zametki 82 426-440
[8]  
Trigub R. M.(undefined)Comparison of Linear Differential Operators undefined undefined undefined-undefined
[9]  
Trigub R. M.(undefined)undefined undefined undefined undefined-undefined