Variational symmetries and pluri-Lagrangian systems in classical mechanics

被引:0
作者
Matteo Petrera
Yuri B. Suris
机构
[1] Technische Universität Berlin,Institut für Mathematik, MA 7
来源
Journal of Nonlinear Mathematical Physics | 2017年 / 24卷
关键词
Lagrangian system; variational symmetry; Noether theorem; pluri-Lagrangian structure; integrable system; 70H03; 70H06; 70H30; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, for any Lagrangian system with m commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the (m+1)-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with m commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
引用
收藏
页码:121 / 145
页数:24
相关论文
共 24 条
  • [1] Bargmann V(1936)Zur Theorie des Wasserstoffatoms: Bemerkungen zur gleichnamigen Arbeit von V. Fock. Zeitschrift f Physik 99 576-582
  • [2] Bobenko AI(2015)Yu.B. Suris. Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems. Commun Math. Phys 336 199-215
  • [3] Boll R(2013)Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Toda-type systems J. Phys. A: Math. Theor 46 26-154
  • [4] Petrera M(2162)What is integrability of discrete variational systems Proc. Royal Soc. A, 2014, 470, No 20130550 15-309
  • [5] Suris YB(2015)Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems J. Phys. A: Math. Theor 48 28-379
  • [6] Boll R(1935)Zur Theorie des Wasserstoffatoms. Zeitschrift f Physik 98 145-228
  • [7] Petrera M(2010)Lagrangian multiform structure for the lattice Gel’fand-Dikij hierarchy J. Phys. A: Math. Theor 43 11-undefined
  • [8] Suris YB(2009)Lagrangian multiform structure for the lattice KP system J. Phys. A: Math. Theor 42 11-undefined
  • [9] Boll R(1981)On the inversion of Noether’s theorem in the Lagrangian formalism Nuovo Cimento, 1970, 46 A 1 299-undefined
  • [10] Petrera M(2013)Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms J. Geom. Mech 5 365-undefined