We investigate a three-parameter equation of state for stellar matter under nuclear statistical equilibrium conditions in the ranges of temperatures 3×109–1011 K and densities 104–1013 g cm−3 and for various ratios of the total number of neutrons to the total number of protons within the range 1–1.5. These conditions correspond to the initial stages of the gravitational collapse of iron stellar cores that are accompanied by nonequilibrium matter neutronization. We analyze the effect of the excited levels of atomic nuclei on the thermodynamic properties of the matter. We show that this effect is insignificant at low densities, ρ≲1010 g cm−3, but it leads to an expansion of the instability region, γ<4/3, at higher densities. The incorporated effects of the Fermi degeneracy of free nucleons prove to be insignificant, because their concentrations are low at low temperatures. In the future, we plan to investigate the effects of Coulomb interactions and neutron-rich nuclei on the thermodynamic properties of the matter.