Contact discontinuity capturing schemes for linear advection and compressible gas dynamics

被引:77
作者
Després B. [1 ,2 ]
Lagoutière F. [1 ]
机构
[1] Laboratoire d'Analyse Numérique, Université P. et M. Curie, 75005 Paris, 4, place Jussieu
[2] Commissariat à l'Énergie Atomique, CEA/DIF, 91680 Bruyeres-le-Chatel
关键词
Contact discontinuity capturing scheme; Euler system; Linear advection; TVD limiter;
D O I
10.1023/A:1013298408777
中图分类号
学科分类号
摘要
We present a non-diffusive and contact discontinuity capturing scheme for linear advection and compressible Euler system. In the case of advection, this scheme is equivalent to the Ultra-Bee limiter of [24], [29]. We prove for the Ultra-Bee scheme a property of exact advection for a large set of piecewise constant functions. We prove that the numerical error is uniformly bounded in time for such prepared (i.e., piecewise constant) initial data, and state a conjecture of non-diffusion at infinite time, based on some local over-compressivity of the scheme, for general initial data. We generalize the scheme to compressible gas dynamics and present some numerical results. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:479 / 524
页数:45
相关论文
共 31 条
  • [1] Wang H., Ewing R.E., Qin G., Lyons S.L., Al-Lawatia M., Man S., A family of eulerian-lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152, pp. 120-163, (1999)
  • [2] Arora M., Roe P.L., A well-behaved tvd limiter for high-resolution calculus of unsteady flow, J. Comput. Phys., 132, 5, pp. 3-11, (1997)
  • [3] Karniadakis G.E., Cockburn B., Shu C.W., The development of discontinuous galerkin methods, Lecture Notes in Computational Science and Engineering, (1999)
  • [4] Hou S., Cockburn B., Shu C.W., TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws IV: The multidimensionnal case, Math. of Comp., (1990)
  • [5] Chainais-Hillairet C., First and second order schemes for a hyperbolic equation: Convergence and error estimate, Finite Volume for Complex Applications Problems and Perspectives, pp. 137-144, (1997)
  • [6] Despres B., Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange, Comptes Rendus de l'Académie des Sciences, Série 1, 324, pp. 1301-1306, (1997)
  • [7] Despres B., Inégalités Entropiques pour Un Solveur de Type Lagrange+convection des Équations de l'Hydrodynamique, (1997)
  • [8] Despres B., Discontinuous galerkin method for the numerical solution of euler equations in axisymmetric geometry, Lecture Notes in Computational Science and Engineering, (1999)
  • [9] Despres B., Invariance properties of lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Nümerische Mathematik, (2001)
  • [10] Steinhoff J., Fan M., Wang L., A new eulerian method for the computation of propagating sjort acoustic and electromagnetic pulses, J. Comput. Phys., 157, pp. 683-706, (2000)