We analyze optimal control problems for two-phase Navier-Stokes equations with surface tension. Based on Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_p$$\end{document}-maximal regularity of the underlying linear problem and recent well-posedness results of the problem for sufficiently small data we show the differentiability of the solution with respect to initial and distributed controls for appropriate spaces resulting from the Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_p$$\end{document}-maximal regularity setting. We consider first a formulation where the interface is transformed to a hyperplane. Then we deduce differentiability results for the solution in the physical coordinates. Finally, we state an equivalent Volume-of-Fluid type formulation and use the obtained differentiability results to derive rigorosly the corresponding sensitivity equations of the Volume-of-Fluid type formulation. For objective functionals involving the velocity field or the discontinuous pressure or phase indciator field we derive differentiability results with respect to controls and state formulas for the derivative. The results of the paper form an analytical foundation for stating optimality conditions, justifying the application of derivative based optimization methods and for studying the convergence of discrete sensitivity schemes based on Volume-of-Fluid discretizations for optimal control of two-phase Navier-Stokes equations.
机构:
Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
Mei, Yu
Wang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
Wang, Yong
Xin, Zhouping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
机构:
TU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Hosseini, Babak S.
Turek, Stefan
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Turek, Stefan
Moller, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, NetherlandsTU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Moller, Matthias
Palmes, Christian
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany