Integrability and Symmetry of Positive Integrable Solutions for Weighted Wolff-Type Integral Systems

被引:2
作者
Bai, Yan [1 ]
Zhang, Zexin [1 ]
Zhang, Zhitao [1 ,2 ,3 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Wolff potential; Weighted integral systems; Optimal integrability; Regularity lifting; Radial symmetry; REGULARITY; EQUATIONS; SOBOLEV;
D O I
10.1007/s12220-024-01605-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the following weighted integral system involving Wolff potential: { u(x)=R-1(x)W beta,gamma(vq|/y|sigma)(x),u(x)>0,x is an element of R-N , v(x)=R-2(x)W beta,gamma(up/|y|sigma)(x), v(x)>0,x is an element of R-N where gamma>2,beta>0, 0<sigma gamma-1, with gamma-1p+gamma-1,gamma-1q+gamma-1<N-beta gamma N,gamma-1p+gamma-1+gamma-1q+gamma-1=N-beta gamma+sigma N,R1,R2are double bounded in R(N )and W-beta,W-gamma(h)(x):=integral(infinity)(0)[integral Bt(x)h(y)dytN-beta gamma](1/gamma-1) dt/t Firstly, by applying Minkowski's inequality and the regularity lifting lemma, we prove the optimal integrability, boundedness and vanishing property at infinity of integrable solutions for the system. Secondly, we use the method of moving planes in integral forms to prove the radial symmetry of the integrable solutions when R1 equivalent to R2 equivalent to 1in R-N
引用
收藏
页数:20
相关论文
共 22 条
[1]   THE PROPERTIES OF POSITIVE SOLUTIONS TO AN INTEGRAL SYSTEM INVOLVING WOLFF POTENTIAL [J].
Chen, Huan ;
Lu, Zhongxue .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1879-1904
[2]   Radial symmetry for a weighted integral equation of Wolff type [J].
Chen, Huantong ;
Li, Xiang ;
Yang, Minbo .
APPLIED MATHEMATICS LETTERS, 2021, 115
[3]   RADIAL SYMMETRY OF SOLUTIONS FOR SOME INTEGRAL SYSTEMS OF WOLFF TYPE [J].
Chen, Wenxiong ;
Li, Congming .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (04) :1083-1093
[4]   THIN SETS IN NONLINEAR POTENTIAL-THEORY [J].
HEDBERG, LI ;
WOLFF, TH .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (04) :161-187
[5]   Quantitative analysis of some system of integral equations [J].
Jin, Chao ;
Li, Congming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (04) :447-457
[6]   THE WIENER TEST AND POTENTIAL ESTIMATES FOR QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
KILPELAINEN, T ;
MALY, J .
ACTA MATHEMATICA, 1994, 172 (01) :137-161
[7]   Qualitative properties of positive solutions of quasilinear equations with Hardy terms [J].
Lei, Yutian .
FORUM MATHEMATICUM, 2017, 29 (05) :1177-1198
[8]   Integrability and asymptotics of positive solutions of a γ-Laplace system [J].
Lei, Yutian ;
Li, Congming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2739-2758
[9]  
Li YY, 2004, J EUR MATH SOC, V6, P153
[10]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374