A gradient based iterative algorithm for solving structural dynamics model updating problems

被引:0
作者
Yongxin Yuan
Hao Liu
机构
[1] Jiangsu University of Science and Technology,School of Mathematics and Physics
[2] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
来源
Meccanica | 2013年 / 48卷
关键词
Model updating; Iterative algorithm; Damped structural system; Partially prescribed spectral data; Optimal approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let Ma∈SRn×n be the analytical mass matrix, and Λ=diag{λ1,…,λp}∈Cp×p, X=[x1,…,xp]∈Cn×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $\end{document} for j=1,…,l, and λk∈R, xk∈Rn for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that MaXΛ2+DXΛ+KX=0. Problem 2: Let Da,Ka∈SRn×n be the analytical damping and stiffness matrices. Find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$\end{document}, where SE is the solution set of Problem 1 and ∥⋅∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.
引用
收藏
页码:2245 / 2253
页数:8
相关论文
共 45 条
  • [1] Tisseur F(2001)The quadratic eigenvalue problem SIAM Rev 43 235-286
  • [2] Meerbergen K(2005)Gradient based iterative algorithms for solving a class of matrix equations IEEE Trans Autom Control 50 1216-1221
  • [3] Ding F(2006)On iterative solutions of general coupled matrix equations SIAM J Control Optim 44 2269-2284
  • [4] Chen T(2008)Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle Appl Math Comput 197 41-50
  • [5] Ding F(2012)An iterative updating method for undamped structural systems Meccanica 47 699-706
  • [6] Chen T(1978)Optimization procedure to correct stiffness and flexibility matrices using vibration tests AIAA J 16 1208-1210
  • [7] Ding F(1978)Optimal weighted orthogonalization of measured modes AIAA J 16 346-351
  • [8] Liu PX(1979)Mass matrix correction using an incomplete set of measured modes AIAA J 17 1147-1148
  • [9] Ding J(1983)Improvement of a large analytical model using test data AIAA J 21 1168-1173
  • [10] Yuan Y(1980)Stiffness matrix correction from incomplete test data AIAA J 18 1274-1275