Diabetic retinopathy classification for supervised machine learning algorithms

被引:0
作者
Luis Filipe Nakayama
Lucas Zago Ribeiro
Mariana Batista Gonçalves
Daniel A. Ferraz
Helen Nazareth Veloso dos Santos
Fernando Korn Malerbi
Paulo Henrique Morales
Mauricio Maia
Caio Vinicius Saito Regatieri
Rubens Belfort Mattos
机构
[1] Universidade Federal de São Paulo - EPM,Physician, Department of Ophthalmology
[2] IPEPO,Instituto Paulista de Estudos e Pesquisas em Oftalmologia
[3] Vision Institute,NIHR Biomedical Research Centre for Ophthalmology, Moorfield Eye Hospital
[4] NHS Foundation Trust,undefined
[5] and UCL Institute of Ophthalmology,undefined
来源
International Journal of Retina and Vitreous | / 8卷
关键词
Diabetic retinopathy classifications; Artificial intelligence; Datasets;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[41]   Supervised Machine Learning Algorithms Can Predict Penetration Resistance in Mineral-fertilized Soils [J].
Massah, Jafar ;
Vakilian, Keyvan Asefpour ;
Torktaz, Somayeh .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2019, 50 (17) :2169-2177
[42]   Prediction of Marshall Stability and Marshall Flow of Asphalt Pavements Using Supervised Machine Learning Algorithms [J].
Gul, Muhammad Aniq ;
Islam, Md Kamrul ;
Awan, Hamad Hassan ;
Sohail, Muhammad ;
Al Fuhaid, Abdulrahman Fahad ;
Arifuzzaman, Md ;
Qureshi, Hisham Jahangir .
SYMMETRY-BASEL, 2022, 14 (11)
[43]   Performance Comparison of Multiple Supervised Machine Learning Algorithms for COVID-19 Mortality Prediction [J].
Pyne, Auishik ;
Anower, Md Shamim .
2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
[44]   A Comparative Study on Supervised Machine Learning Algorithms for Copper Recovery Quality Prediction in a Leaching Process [J].
Flores, Victor ;
Leiva, Claudio .
SENSORS, 2021, 21 (06) :1-21
[45]   A RELIABLE METHOD FOR ANNOTATING HAND AND WRIST X-RAYS FOR SUPERVISED MACHINE LEARNING ALGORITHMS [J].
Rambojun, A. ;
Antony, A. ;
Hughes-Roberts, Y. ;
Tillett, W. .
ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 :2020-2021
[46]   Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods [J].
van Giffen, Benjamin ;
Herhausen, Dennis ;
Fahse, Tobias .
JOURNAL OF BUSINESS RESEARCH, 2022, 144 :93-106
[47]   A Decision Support System for Crop Recommendation Using Machine Learning Classification Algorithms [J].
Senapaty, Murali Krishna ;
Ray, Abhishek ;
Padhy, Neelamadhab .
AGRICULTURE-BASEL, 2024, 14 (08)
[48]   Machine Learning and AI Approaches for Analyzing Diabetic and Hypertensive Retinopathy in Ocular Images: A Literature Review [J].
Urina-Triana, Miguel Alberto ;
Pineres-Melo, Marlon Alberto ;
Mantilla-Morron, Mirary ;
Butt-Aziz, Shariq ;
Galeano-Munoz, Luisa ;
Naz, Sumera ;
Ariza-Colpas, Paola Patricia .
IEEE ACCESS, 2024, 12 :54590-54607
[49]   A systematic literature review of machine learning based risk prediction models for diabetic retinopathy progression [J].
Usman, Tiwalade Modupe ;
Saheed, Yakub Kayode ;
Nsang, Augustine ;
Ajibesin, Abel ;
Rakshit, Sandip .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 143
[50]   A User-friendly Approach for the Diagnosis of Diabetic Retinopathy Using ChatGPT and Automated Machine Learning [J].
Mohammadi, S. Saeed ;
Nguyen, Quan Dong .
OPHTHALMOLOGY SCIENCE, 2024, 4 (04)