Minimal models for Kähler threefolds

被引:0
作者
Andreas Höring
Thomas Peternell
机构
[1] UMR 7351 CNRS,Laboratoire de Mathématiques J.A. Dieudonné
[2] Université de Nice Sophia-Antipolis,Mathematisches Institut
[3] Universität Bayreuth,undefined
来源
Inventiones mathematicae | 2016年 / 203卷
关键词
32J27; 14E30; 14J30; 32J17; 32J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} be a compact Kähler threefold that is not uniruled. We prove that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} has a minimal model.
引用
收藏
页码:217 / 264
页数:47
相关论文
共 38 条
[1]  
Ancona V(1987)Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces Ann. Mat. Pura Appl. 4 153-164
[2]  
Araujo C(2010)The cone of pseudo-effective divisors of log varieties after Batyrev Math. Z. 264 179-193
[3]  
Ancona V(1984)On the blowing down problem in J. Reine Angew. Math. 350 178-182
[4]  
Van Tan V(2010)-analytic geometry J. Am. Math. Soc. 23 405-468
[5]  
Birkar C(2013)Existence of minimal models for varieties of log general type J. Algebr. Geom. 22 201-248
[6]  
Cascini P(2006)The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Int. J. Math. 17 35-43
[7]  
Hacon CD(1997)A positivity property for foliations on compact Kähler manifolds Math. Nachr. 187 29-59
[8]  
McKernan J(2000)Towards a Mori theory on compact Kähler threefolds. I J. Algebr. Geom. 9 223-264
[9]  
Boucksom Sébastien(1987)Complex threefolds with non-trivial holomorphic Acta Math. 159 153-169
[10]  
Demailly Jean-Pierre(1992)-forms J. Algebr. Geom. 1 361-409