Strichartz Estimate and Nonlinear Klein–Gordon Equation on Nontrapping Scattering Space

被引:0
作者
Junyong Zhang
Jiqiang Zheng
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Cardiff University,School of Mathematics
[3] Institute of Applied Physics and Computational Mathematics,undefined
[4] Université Nice Sophia-Antipolis,undefined
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Strichartz estimate; Scattering manifold; Spectral measure; Global existence; Scattering theory; 35Q40; 35S30; 47J35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the nonlinear Klein–Gordon equation on a product space M=R×X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\mathbb {R}\times X$$\end{document} with metric g~=dt2-g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{g}=dt^2-g$$\end{document} where g is the scattering metric on X. We establish the global-in-time Strichartz estimate for Klein–Gordon equation without loss of derivative by using the microlocalized spectral measure of Laplacian on scattering manifold showed in Hassell and Zhang (Anal PDE 9:151–192, 2016) and a Littlewood–Paley squarefunction estimate proved in Zhang (Adv Math 271: 91–111, 2015). We prove the global existence and scattering for a family of nonlinear Klein–Gordon equations for small initial data with minimum regularity on this setting.
引用
收藏
页码:2957 / 2984
页数:27
相关论文
共 73 条
[1]  
Alexopoulos G(2004)Spectral multipliers for Markov chains JMS Jpn. 56 833-852
[2]  
Anker JP(2014)Wave and Klein-Gordon equations on hyperbolic spaces Anal. PDE 7 953-995
[3]  
Pierfelice V(1984)On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations Math. Z. 186 383-391
[4]  
Brenner P(2010)A parametrix for the forward fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces J. Funct. Anal. 259 1673-1719
[5]  
Baskin D(2010)A Strichartz estimate for de Sitter space Proc. Centre Math. Appl. ANU 44 97-104
[6]  
Baskin D(2013)Strichartz estimates on asymptotically de Sitter spaces Ann. Henri Poincaré 14 221-252
[7]  
Baskin D(2009)Strichartz estimates for the wave equation on manifold with boundary Ann. Inst. H. Poincaré Anal. Non Linéaire 26 1817-1829
[8]  
Blair MD(2013)Strichartz estimates for the wave equation on flat cones Int. Math. Res. Not. 3 562-591
[9]  
Smith HF(2003)Global Strichartz estimates for nontrapping geometries: about an article by H. Smith and C. D. Sogge Commun. PDE 28 1675-1683
[10]  
Sogge CD(2008)Global existence for energy critical waves in 3-D domains J. Am. Math. Soc. 21 831-845