Ample semigroups and Frobenius algebras

被引:0
作者
Xiaojiang Guo
K. P. Shum
机构
[1] Jiangxi Normal University,Department of Mathematics
[2] Yunnan University,Institute of Mathematics
来源
Semigroup Forum | 2015年 / 91卷
关键词
Ample semigroup; Semigroup algebra; Right (left) self-injective algebra; Frobenius algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the semigroup algebra of an ample semigroup S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} over a field is Frobenius if and only if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a finite inverse semigroup.
引用
收藏
页码:213 / 223
页数:10
相关论文
共 13 条
  • [1] Chen L(2010)Semigroup algebras of finite type-A semigroups J. Jiangxi Norm. Univ. 34 8-12
  • [2] Guo XJ(1979)Adequate semigroups Proc. Edinb. Math. Soc. 22 113-125
  • [3] Fountain JB(1982)Abundant semigroups Proc. London Math. Soc. 44 103-129
  • [4] Fountain JB(2005)The natural partial orders on abundant semigroups Adv. Math. 34 297-308
  • [5] Guo XJ(2008)Type-A semigroups whose full subsemigroups form a chain under set inclusion Asian Eur. J. Math. 1 359-367
  • [6] Luo YF(2012)Semigroup algebras of finite ample semigroups Proc. Royal Soc. Edinb. 142 371-389
  • [7] Guo XJ(1987)The natural partial orders on an abundant semigroup Proc. Edinb. Math. Soc. 30 169-186
  • [8] Huang FS(1968)Some semigroups having quasi-Frobenius algebras. I Proc. London Math. Soc 18 484-494
  • [9] Shum KP(undefined)undefined undefined undefined undefined-undefined
  • [10] Guo XJ(undefined)undefined undefined undefined undefined-undefined