(L∞ +  Bolza) control problems as dynamic differential games

被引:0
|
作者
Piernicola Bettiol
Franco Rampazzo
机构
[1] Université de Brest,Laboratoire de Mathematiques
[2] Università di Padova,Dipartimento di Matematica
来源
Nonlinear Differential Equations and Applications NoDEA | 2013年 / 20卷
关键词
49K35 minimax problems; 49N70 differential games; 49L25 viscosity solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a (L∞ + Bolza) control problem, namely a problem where the payoff is the sum of a L∞ functional and a classical Bolza functional (the latter being an integral plus an end-point functional). Owing to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\langle}L^1,L^\infty{\rangle}}$$\end{document} duality, the (L∞+Bolza) control problem is rephrased in terms of a static differential game, where a new variable k plays the role of maximizer (we regard 1−k as the available fuel for the maximizer). The relevant fact is that this static game is equivalent to the corresponding dynamic differential game, which allows the (upper) value function to verify a boundary value problem. This boundary value problem involves a Hamilton–Jacobi equation whose Hamiltonian is continuous. The fueled value function\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal W}(t,x,k)}$$\end{document} —whose restriction to k = 0 coincides with the value function of the reference (L∞ + Bolza) problem—is continuous and solves the established boundary value problem. Furthermore, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal W}}$$\end{document} is the unique viscosity solution in the class of (not necessarily continuous) bounded solutions.
引用
收藏
页码:895 / 918
页数:23
相关论文
共 50 条
  • [1] (L a + Bolza) control problems as dynamic differential games
    Bettiol, Piernicola
    Rampazzo, Franco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 895 - 918
  • [2] STATE CONSTRAINED L∞ OPTIMAL CONTROL PROBLEMS INTERPRETED AS DIFFERENTIAL GAMES
    Bettiol, Piernicola
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 3989 - 4017
  • [3] ON BOLZA OPTIMAL CONTROL PROBLEMS WITH CONSTRAINTS
    Cannarsa, Piermarco
    Frankowska, Helena
    Marchini, Elsa M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 629 - 652
  • [4] A differential dynamic games approach to flow control
    Clark, JMC
    Vinter, RB
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1228 - 1231
  • [5] CONVEX CONTROL PROBLEMS OF BOLZA IN HILBERT SPACES
    BARBU, V
    SIAM JOURNAL ON CONTROL, 1975, 13 (04): : 754 - 771
  • [6] STATE CONSTRAINTS IN CONVEX CONTROL PROBLEMS OF BOLZA
    ROCKAFELLAR, RT
    SIAM JOURNAL ON CONTROL, 1972, 10 (04): : 691 - 715
  • [7] Composition of Dynamic Control Objectives Based on Differential Games
    Kricheli, Joshua Shay
    Sadon, Aviran
    Arogeti, Shai
    Regev, Shimon
    Weiss, Gera
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 298 - 304
  • [8] EXISTENCE THEOREMS FOR GENERAL CONTROL PROBLEMS OF BOLZA AND LAGRANGE
    ROCKAFELLAR, RT
    ADVANCES IN MATHEMATICS, 1975, 15 (03) : 312 - 333
  • [9] BOLZA, RELAXATION AND VISCOSITY PROBLEMS GOVERNED BY A SECOND ORDER DIFFERENTIAL EQUATION
    Castaing, Charles
    Le Xuan Truong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2013, 14 (03) : 451 - 482
  • [10] Zero-sum state constrained differential games: existence of value for Bolza problem
    Bettiol, Piernicola
    Cardaliaguet, Pierre
    Quincampoix, Marc
    INTERNATIONAL JOURNAL OF GAME THEORY, 2006, 34 (04) : 495 - 527