Similarity and consimilarity of elements in the real Cayley-Dickson algebras

被引:5
作者
Yongge Tian
机构
[1] Concordia University,Department of Mathematics and Statistics
关键词
quaternions; octonions; sedenions; equation; similarity; consimilarity; square root; 17A05; 17A35;
D O I
10.1007/BF03041938
中图分类号
学科分类号
摘要
The similarity and consimilarity of elements in the real quaternion, octonion and sedenion algebras, as well as in the general real Cayley-Dickson algebras are considered by solving the two fundamental equationsax=xb and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ax = \bar xb$$ \end{document} in these algebras. Some consequences are also presented.
引用
收藏
页码:61 / 76
页数:15
相关论文
共 14 条
[1]  
Althoen S. S.(1978)Real division algebras and Dickson construction Amer. Math. Monthly 48 369-371
[2]  
Weidner J. F.(1951)Matrices of quaternions Pacific J. Math. 1 329-335
[3]  
Brenner J. L.(1967)On generalized Cayley-Dickson algebras Pacific J. Math. 20 415-422
[4]  
Brown R. B.(1997)Quaternionic linear and quadratic equations J. Natur. Geom. 11 101-106
[5]  
Michael P. R.(1941)Equations in quaternions Amer. Math. Monthly 48 654-661
[6]  
Neven I.(1962)Quadratic division algebras Tans. Amer. Math. Soc. 115 202-221
[7]  
Osborn J. M.(1979)About nonassociativity in physics and Cayley-Graves’ octonions Hadronic J. 2 1388-1459
[8]  
Sorgsepp L.(1981)Binary and ternary sedenions Hadronic J. 4 327-353
[9]  
Lôhmus J.(1954)On the algebras formed by the Cayley-Dickson process Amer. J. Math. 76 435-446
[10]  
Sorgsepp L.(1984)Construction relating Clifford algebras and Cayley-Dickson algebras J. Math. Phys. 25 2351-2353