An Overview on Numerical Analyses of Nematic Liquid Crystal Flows

被引:0
作者
S. Badia
F. Guillén-Gónzalez
J. V. Gutiérrez-Santacreu
机构
[1] Universitat Politècnica de Catalunya,International Center for Numerical Methods in Engineering (CIMNE)
[2] University of Sevilla,Dpto. E.D.A.N.
[3] University of Sevilla,Dpto. de Matemática Aplicada I
[4] E.T.S.I. Informática,undefined
来源
Archives of Computational Methods in Engineering | 2011年 / 18卷
关键词
Liquid Crystal; Energy Estimate; Penalty Parameter; Numer Anal; Discrete Velocity;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this work is to provide an overview of the most recent numerical developments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The sphere constraint must be enforced almost everywhere in order to obtain an energy estimate. Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical level, two alternative approaches have been introduced: a penalty method and a saddle-point method. These approaches are suitable for their numerical approximation by finite elements, since a discrete version of the restriction is enough to prove the desired energy estimate.
引用
收藏
页码:285 / 313
页数:28
相关论文
共 70 条
[1]  
Alouges F(1997)A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case SIAM J Numer Anal 34 1708-1726
[2]  
Azérad P(2001)Mathematical justification of the hidrostatic approximation in the primitive equations of geophysical fluid dynamics SIAM J Math Anal 33 847-859
[3]  
Guillén-González F(2009)On a multiscale approach to the transient Stokes problem: dynamic subscales and anisotropic space-time discretization Appl Math Comput 207 415-433
[4]  
Badia S(2011)Finite element approximation of nematic liquid crystal flows using a saddle-point structure J Comput Phys 230 1686-1706
[5]  
Codina R(2005)Stability and convergence of finite-element approximation schemes for harmonic maps SIAM J Numer Anal 43 220-238
[6]  
Badia S(2007)Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres Math Comput 76 1847-1859
[7]  
Guillén-González F(2008)Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow SIAM J Numer Anal 46 1704-1731
[8]  
Gutiérrez-Santacreu JV(1989)The weak solutions to the evolution problems of harmonic maps Math Z 201 69-74
[9]  
Bartels S(1989)Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners SIAM J Math Anal 20 74-97
[10]  
Bartels S(1989)Problèmes mixtes pour le laplacien dans des domaines polyédraux courbes. (French. English summary) C R Acad Sci Paris Sér I Math 309 553-558