Local approximation of a metapopulation’s equilibrium

被引:0
作者
A. D. Barbour
R. McVinish
P. K. Pollett
机构
[1] Universität Zürich,
[2] University of Queensland,undefined
来源
Journal of Mathematical Biology | 2018年 / 77卷
关键词
Incidence function model; Spatially realistic Levins model; Equilibrium; Fixed point; Metapopulation; 92D40; 60J10; 60J27;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to q1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_1(z)$$\end{document}, the equilibrium occupation probability in Levins’s model, at any point z∈Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \in \Omega $$\end{document} not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.
引用
收藏
页码:765 / 793
页数:28
相关论文
共 36 条
  • [1] Alonso D(2002)Extinction dynamics in mainland-island metapopulations: an $ N$-patch stochastic model Bull Math Biol 64 913-958
  • [2] McKane A(2004)Convergence of a structured metapopulation model to Levins’s model J Math Biol 49 468-500
  • [3] Barbour AD(2015)Connecting deterministic and stochastic metapopulation models J Math Biol 71 1481-1504
  • [4] Pugliese A(2008)Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes Theor Popul Biol 74 209-225
  • [5] Barbour AD(2002)A scrutiny of the Levins metapopulation model Comments Theor Biol 7 257-281
  • [6] McVinish R(1994)A practical model of metapopulation dynamics J Anim Ecol 63 151-162
  • [7] Pollett PK(1997)Uniting two general patterns in the distribution of species Science 275 397-400
  • [8] Cornell SJ(2005)Monotone maps: a review J Differ Equ Appl 11 379-398
  • [9] Ovaskainen O(2002)Using individual-based simulations to test the Levins metapopulation paradigm J Anim Ecol 71 270-279
  • [10] Etienne RS(2000)Extinction thresholds and metapopulation persistence in dynamic landscapes Am Nat 156 478-494