Trace anomaly of weyl fermions via the path integral

被引:0
作者
Rémy Larue
Jérémie Quevillon
Roman Zwicky
机构
[1] Laboratoire de Physique Subatomique et de Cosmologie,Higgs Centre for Theoretical Physics, School of Physics and Astronomy
[2] Université Grenoble-Alpes,undefined
[3] CNRS/IN2P3,undefined
[4] 53,undefined
[5] CERN,undefined
[6] Theoretical Physics Department,undefined
[7] The University of Edinburgh,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Anomalies in Field and String Theories; Scale and Conformal Symmetries; Space-Time Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the trace, diffeomorphism and Lorentz anomalies of a free Weyl fermion in a gravitational background field by path integral methods. This is achieved by regularising the variation of the determinant of the Weyl operator building on earlier work by Leutwyler. The trace anomaly is found to be one half of the one of a Dirac fermion. Most importantly we establish that the potential parity-odd curvature term RR~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R\overset{\sim }{R} $$\end{document}, corresponding to the Pontryagin density, vanishes. This is to the contrary of some recent findings in the literature which gave rise to a controversy. We verify, that the regularisation does not lead to (spurious) anomalies in the Lorentz and diffeomorphism symmetries. We argue that in d = 2 (mod 4) P- and CP-odd terms cannot appear and that for d = 4 (mod 4) they are absent at least at leading order.
引用
收藏
相关论文
共 64 条
[1]  
Capper DM(1974)undefined Nuovo Cim. A 23 173-undefined
[2]  
Duff MJ(1977)undefined Phys. Rev. D 16 438-undefined
[3]  
Collins JC(1977)undefined Nucl. Phys. B 120 212-undefined
[4]  
Duncan A(1994)undefined Class. Quant. Grav. 11 1387-undefined
[5]  
Joglekar SD(2014)undefined JHEP 07 117-undefined
[6]  
Nielsen NK(1986)undefined Class. Quant. Grav. 3 635-undefined
[7]  
Duff MJ(1969)undefined Phys. Rev. 177 2426-undefined
[8]  
Bonora L(2015)undefined JHEP 06 024-undefined
[9]  
Giaccari S(2017)undefined Eur. Phys. J. C 77 511-undefined
[10]  
Lima de Souza B(2018)undefined Eur. Phys. J. C 78 652-undefined