In situ synthesis and properties of self-reinforced Si3N4–SiO2–Al2O3–Y2O3(La2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{3} \hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3} \ (\hbox {La}_{2}\hbox {O}_{3}$$\end{document}) glass–ceramic composites

被引:0
作者
Zhiwei Luo
Anxian Lu
Lei Han
Jun Song
机构
[1] School of Materials Science and Engineering,
[2] Central South University,undefined
关键词
Crystallization; glass–ceramics; phase transformations; silicon nitride;
D O I
10.1007/s12034-017-1426-9
中图分类号
学科分类号
摘要
In-situ-grown β-Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}$$\end{document}-reinforced SiO2–Al2O3–Y2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}$$\end{document}(La2O3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {La}_{2}\hbox {O}_{3})$$\end{document} self-reinforced glass–ceramic composites were obtained without any β-Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}$$\end{document} seed crystal. These composites with different compositions were prepared in a nitrogen atmosphere for comparison of phase transformation and mechanical properties. The results showed that SiO2–Al2O3–Y2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}$$\end{document}(La2O3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {La}_{2}\hbox {O}_{3})$$\end{document} glass can effectively promote α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}- to β-Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}$$\end{document} phase transformation. The crystallized Y2Si2O7–La4.67Si3O13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Y}_{2}\hbox {Si}_{2}\hbox {O}_{7}\textendash \hbox {La}_{4.67}\hbox {Si}_{3}\hbox {O}_{13}$$\end{document} phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The Si3N4–SiO2–Al2O3–Y2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{3}\hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}$$\end{document}(La2O3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {La}_{2}\hbox {O}_{3})$$\end{document} glass–ceramic composites exhibit excellent mechanical properties compared with unreinforced glass–ceramic matrix, which is undoubtedly attributed to the elongated β-Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}$$\end{document} grains. These glass–ceramic Si3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Si}_{3}\hbox {N}_{4}$$\end{document} composites with excellent comprehensive properties might be a promising material for high-temperature applications.
引用
收藏
页码:683 / 690
页数:7
相关论文
共 134 条
  • [1] Fu F(2014)undefined J. Alloys Compd. 582 265-undefined
  • [2] Chen B(2005)undefined J. Non-Cryst. Solids 351 863-undefined
  • [3] Shen L(2011)undefined J. Am. Ceram. Soc. 94 2429-undefined
  • [4] Pun EYB(2004)undefined J. Eur. Ceram. Soc. 24 3377-undefined
  • [5] Lin H(2008)undefined J. Non-Cryst. Solids 354 49-undefined
  • [6] Marchi J(2012)undefined J. Eur. Ceram. Soc. 32 1157-undefined
  • [7] Morais DS(2004)undefined J. Eur. Ceram. Soc. 24 3437-undefined
  • [8] Schneider J(2005)undefined J. Am. Ceram. Soc. 88 875-undefined
  • [9] Bressiani JC(2011)undefined Bull. Mater. Sci. 34 767-undefined
  • [10] Bressiani AHA(2013)undefined J. Non-Cryst. Solids 362 207-undefined