Normal generation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-Betti numbers of groups

被引:0
作者
Denis Osin
Andreas Thom
机构
[1] Vanderbilt University,Department of Mathematics
[2] Universität Leipzig,undefined
关键词
Normal Subgroup; Simple Group; Cayley Graph; Betti Number; Normal Rank;
D O I
10.1007/s00208-012-0828-7
中图分类号
学科分类号
摘要
The normal rank of a group is the minimal number of elements whose normal closure coincides with the group. We study the relation between the normal rank of a group and its first \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-Betti number and conjecture the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1^{(2)}(G) \le \mathrm{nrk}(G)-1$$\end{document} for torsion free groups. The conjecture is proved for limits of left-orderable amenable groups. On the other hand, for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, we give an example of a simple group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} (with torsion) such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1^{(2)}(Q) \ge n-1-\varepsilon $$\end{document}. These groups also provide examples of simple groups of rank exactly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}; existence of such examples for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n> 3$$\end{document} was unknown until now.
引用
收藏
页码:1331 / 1347
页数:16
相关论文
共 37 条
[1]  
Arzhantseva G(2007)The SQ-universality and residual properties of relatively hyperbolic groups J. Algebra 315 165-177
[2]  
Minasyan A(1984)Subgroups of direct products of free groups J. Lond. Math. Soc. 30 44-52
[3]  
Osin DV(1997)Group cohomology, harmonic functions and the first Potential Anal. 6 313-326
[4]  
Baumslag G(1991)-Betti number Pac. J. Math. 147 243-248
[5]  
Roseblade JE(2007)Right orderable groups that are not locally indicable Math. Proc. Camb. Phil. Soc. 143 257-264
[6]  
Bekka BM(1986)Deficiency and abelianized deficiency of some virtually free groups Topology 25 189-215
[7]  
Valette A(1992)-cohomology and group cohomology Semigr. Forum 45 385-394
[8]  
Bergman GM(2003)The lower central series of the free partially commutative group Bull. Lond. Math. Soc. 35 236-238
[9]  
Bridson MR(2000)On the analytic zero divisor conjecture of Linnell Invent. Math. 139 41-98
[10]  
Tweedale M(1983)Coût des relations d’équivalence et des groupes J. Pure Appl. Algebra 29 59-74