An evolutionary-assisted machine learning model for global solar radiation prediction in Minas Gerais region, southeastern Brazil

被引:0
作者
Samuel da Costa Alves Basílio
Fernando Ferrari Putti
Angélica Carvalho Cunha
Leonardo Goliatt
机构
[1] Federal Center for Technological Education of Minas Gerais,Department of Computing and Mechanics
[2] Federal University of Juiz de Fora,Computational Modeling Program
[3] São Paulo State University,School of Sciences and Engineering
来源
Earth Science Informatics | 2023年 / 16卷
关键词
Solar radiation; Predictive model; Optimization algorithm; Hybrid approach;
D O I
暂无
中图分类号
学科分类号
摘要
Solar radiation prediction is necessary for designing photovoltaic systems, assessment of regional climate and crop growth modeling. However, this estimate depends on expensive devices, namely pyranometer and pyranometer. Considering the difficulty of acquiring these devices, predicting such values through mathematical and computational models is a convenient approach where costs can be reduced. In particular, machine learning methods have been successfully and widely applied for this task. However, the choice of the correct machine learning model, its parameters sets, and the variables used influence obtained results. This work presents a methodology that optimizes the aforementioned points to efficiently predict solar radiation in the state of Minas Gerais, Brazil. Currently, no work presents a computational model for the entire state. For this, data from 51 cities in Minas Gerais are used, obtained by the automatic weather stations of the National Institute of Meteorology. Two machine learning models, Artificial Neural Network and Multivariate Adaptive Regression Spline, were optimized through a Simple Genetic Algorithm, and the results compared to those available in the literature. The best results were found at the Guanhães station, with R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} of 0.867 and RMSE of 1.68 MJ m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} day-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, and at the Muriaé station, with R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} of 0.864 and RMSE of 1.64 MJ m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} day-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. The models had their metrics compared to each other through the methodology of performance profiles, where the Multivariate Adaptive Regression Spline model proved to be more efficient. The results demonstrate that computational models perform better than the empirical models currently used.
引用
收藏
页码:2049 / 2067
页数:18
相关论文
共 52 条
[11]  
Cunha AC(2011)Scikit-learn: Machine learning in Python J Mach Learn Res 105 91-282
[12]  
Filho LRAG(2014)Daily global solar radiation prediction based on a hybrid coral reefs optimization - extreme learning machine approach Sol Energy 16 281-26
[13]  
Tanaka AA(2012)Radiação solar estimada com base na temperatura do ar para três regiões de minas gerais Rev Bras Engenharia Agric Ambient 42 276-157
[14]  
Dantas AAA(2012)Métodos para estimar radiação solar na região noroeste de minas gerais Cienc Rural 27 17-274
[15]  
de Carvalho LG(2022)Hybrid particle swarm optimization and group method of data handling for short-term prediction of natural daily streamflows Model Earth Syst Environ 7 136-undefined
[16]  
Ferreira E(1994)Genetic algorithms: a survey Computer 06 258-undefined
[17]  
Dolan ED(2021)Global solar radiation prediction over north dakota using air temperature: Development of novel hybrid intelligence model Energy Rep 235 960-undefined
[18]  
Moré JJ(2014)On the development of spatial/temporal solar radiation maps: A minas gerais (brazilian) case study J Geogr Inf Syst undefined undefined-undefined
[19]  
Fan J(2021)A review on global solar radiation prediction with machine learning models in a comprehensive perspective Energy Convers Manag undefined undefined-undefined
[20]  
Wu L(undefined)undefined undefined undefined undefined-undefined